Laserfiche WebLink
.•fit• ��• r 1 •1, ` �') E <br />• TRIGONOMETRIC FORM1JL;2E <br />t1 B B B <br />a d a d a <br />z, <br />C <br />Right Triangle Oblique Triangles <br />Solution of Right _Triangles <br />For Angle A. sin= c , cos = , tan = b , cot= , sec = b , cosec = a <br />Given Required --72- <br />I a, b -4, B ,c tan A = b cot B, c = V az -{ = a y , T <br />a, d A, B, b sin A = a = cos B, b = %/ (c+cc) (c—a) = e 1— a x <br />z <br />A, a B, b, c B=90°—A, b= a cotA, c= a <br />sin A. <br />A, b B, a, c B=90`—A, a= b tan A, c= b <br />cus A. <br />A, c B, a, b B = 90°—A, ¢ = c sin A, b -- c cos A, <br />Solution of Oblique Triangles <br />Given Required <br />A, B, a b, c, C b = s sl n 4 C = 180°— (A -F B) , d ` s n 4 <br />b sin A ¢ in C <br />A, a, b B, c, C sin B= sin <br />a, b, C A, B, c A -{-B-180°— C, tan HA-1(a—b) tan 'a (A+B)* <br />c= <br />a sin C <br />sin A <br />a, i5, c A, B, C s= 2. <br />sin 3B=yf ( a d C=180°—( A+B) <br />a, b, c Area s= 2 area a(a—cc) {s—b) (s—d <br />bcsinA <br />i A, b, c Area area = <br />i 2 <br />a" sin B sin C <br />A, B, C, a Area area = <br />L sin 4 <br />REDUCTION TO HORIZONTAL, <br />Horizontal distance= Slope distance muItiplied by the <br />cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />ll i�'ce Vert. angle= 5" 101. From Table, Page IX: cos 51 10Y= <br />e iS 9959• Horizontal distance=319.4X.9959=318.69 ft. <br />c�1ot' Y,g1e Horizontal distance also=Slope distance minus slope <br />1e P4 distance times (i—cosine of vertical angle). With the ' <br />same figures as in the preceding example; the follow - <br />Horizontal distance ing result is obtained. Cosine 5° 10'=.9959.1—.9959=.0041. <br />319.4 X.06 -11=1.3L 319.4-1.31=318.09 St. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=l4 %, <br />slope distance =302.6 ft. Horizontal distance --m6— 14 X 14 =302C- 0.32=802.28 ft. <br />2X302.6 <br />MAOI IN U, 6. A. <br />