Laserfiche WebLink
Casio. Cotg. Case& Sec. Tan. Sin. Angle <br />it I, <br />13 <br />Casio. Cotg. Cosec. Sec. Tan. Sin. (a-7))) tan Angl <br />TRIGONOMETRIC FORMULA <br />B B <br />a <br />c a c a c <br />s J� 3 <br />`� b CAA b C A b C l <br />Right Triangle Oblique Triangles <br />Solution of Right Triangles <br />y a b a_ <br />For Angle A. sin = — , cos = — , tan = cot = — a , sec = —, cosec = <br />c c b <br />Given Required a <br />a,b I A,B,c taaA=b= cot B,c= a" —+-7 _=a, i+ x2 <br />a, c A, B, b 0.2 <br />A, a B, b, c B = 90°—A, b = a cot A, e, = a -17 <br />1 �. <br />sin _4. <br />A, b B, a, c B = 90°—A, a = b tan A, c = cos A. ' tt' <br />�) <' <br />A, c If, a., b B = 90'--4, a = o sin A, b = 6 COS A,: - U <br />Solution of Oblique Triangles 3 <br />Given Required a sin B a sin C,1 <br />A, B,a b, c, C b= C=180°—(A B),c= <br />sin A sin A <br />b sin A a sin C t <br />A, a, b 11, c, C sin B= G' a C= 180°—(1 -( B), c = sin A <br />( <br />a, b, A, B, e A+B=180°— G', ten :': (A—B)_ ('- A+B <br />�, <br />a + b <br />c — a sin C y�rI <br />sin A ? D <br />a, b, c A, B, C 4= 2 sin] ._4=, be <br />f '7 <br />sin B=1 C=180°,=(A+B) <br />ac <br />a, b e Area s—«+�+c, area = a(a—a s— ){,—c) <br />A, b, c Area b c sin A <br />area <br />= a2 sin B sin C <br />2 <br />A, B, G; a Area area = 2 sin A <br />REDUCTION TO HORIZONTAL <br />e Horizontal distance= Slope distance multiplied by the <br />cc cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />6""", Vert- angle =5° 30'. From Table, Page IX. cos 50 101= <br />e H 9959. Horizontal distance=310.4X.9959=315.09 ft. <br />$�°� A�'t" Horizontal distance also= Slope distance minus Slope <br />�e distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 50 10'=.9959. 1—.9959=.0041. <br />319.4X.0041=1.31. 319.4-1.31=31&09 ft. <br />When the rise is known, the horizontal distance is approximately:—tbe slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft., <br />slope distance=302 6 ft. Horizontal distance=3026— 14 X 14 =302.6-0.3 =30225 it <br />2 X 302 6 <br />MADE IN U.S.A. <br />- <br />n�• �`, <br />bU.Glad.ii6"1.2661,;. <br />.6157 <br />.7511.36901.6241.2S0.7SS01 <br />92 <br />10'.6150.78G01.27191.6131.272.75622 <br />50 <br />20 <br />.G202 <br />.7907 <br />1.274S <br />1.6121.265 <br />.7&142 <br />40 <br />I`I , <br />-" i0 <br />-40.6245.50021.2S08ILG011.230iMN:20 <br />50.6271 <br />.G225 <br />.79541.27781.600 <br />.50501:2-3-1.5951.242.77597 <br />t .257 <br />.7-261 <br />30 <br />10 <br />Casio. Cotg. Case& Sec. Tan. Sin. Angle <br />it I, <br />13 <br />Casio. Cotg. Cosec. Sec. Tan. Sin. (a-7))) tan Angl <br />TRIGONOMETRIC FORMULA <br />B B <br />a <br />c a c a c <br />s J� 3 <br />`� b CAA b C A b C l <br />Right Triangle Oblique Triangles <br />Solution of Right Triangles <br />y a b a_ <br />For Angle A. sin = — , cos = — , tan = cot = — a , sec = —, cosec = <br />c c b <br />Given Required a <br />a,b I A,B,c taaA=b= cot B,c= a" —+-7 _=a, i+ x2 <br />a, c A, B, b 0.2 <br />A, a B, b, c B = 90°—A, b = a cot A, e, = a -17 <br />1 �. <br />sin _4. <br />A, b B, a, c B = 90°—A, a = b tan A, c = cos A. ' tt' <br />�) <' <br />A, c If, a., b B = 90'--4, a = o sin A, b = 6 COS A,: - U <br />Solution of Oblique Triangles 3 <br />Given Required a sin B a sin C,1 <br />A, B,a b, c, C b= C=180°—(A B),c= <br />sin A sin A <br />b sin A a sin C t <br />A, a, b 11, c, C sin B= G' a C= 180°—(1 -( B), c = sin A <br />( <br />a, b, A, B, e A+B=180°— G', ten :': (A—B)_ ('- A+B <br />�, <br />a + b <br />c — a sin C y�rI <br />sin A ? D <br />a, b, c A, B, C 4= 2 sin] ._4=, be <br />f '7 <br />sin B=1 C=180°,=(A+B) <br />ac <br />a, b e Area s—«+�+c, area = a(a—a s— ){,—c) <br />A, b, c Area b c sin A <br />area <br />= a2 sin B sin C <br />2 <br />A, B, G; a Area area = 2 sin A <br />REDUCTION TO HORIZONTAL <br />e Horizontal distance= Slope distance multiplied by the <br />cc cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />6""", Vert- angle =5° 30'. From Table, Page IX. cos 50 101= <br />e H 9959. Horizontal distance=310.4X.9959=315.09 ft. <br />$�°� A�'t" Horizontal distance also= Slope distance minus Slope <br />�e distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 50 10'=.9959. 1—.9959=.0041. <br />319.4X.0041=1.31. 319.4-1.31=31&09 ft. <br />When the rise is known, the horizontal distance is approximately:—tbe slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft., <br />slope distance=302 6 ft. Horizontal distance=3026— 14 X 14 =302.6-0.3 =30225 it <br />2 X 302 6 <br />MADE IN U.S.A. <br />