Laserfiche WebLink
-2,- 3-1- <br />!z>; 9D �2 <br />�_) Z <br />z <br />_ � �A%1a4L11'•�3 <br />53 <br />TRIGONOMETRIC FORMUL1E <br />B B B <br />a c a c a <br />}` b C A b -G'A b C <br />' `Right:Triangle Oblique Triangles <br />Solution of Right Triangles <br />For Angle A. ,sin = a ,cos = ,tan = b ,cot = a ,sec = b , cosec = a <br />S Given Required <br />a,b 4,B,c tanA=6= Cot B,c= _+ =a 1+a' <br />a, o 21, B, b sin A. = a = cos B, b (c=, a) (c—a) = c 1 — <br />Q$ a ' <br />c 1. <br />A, a- <br />B, b, cB <br />(11 <br />= 90°-A, b = a cotA, e = sin A. --� <br />� A, b <br />I`} -7 n <br />B=90' -A a= btan A,c= b " <br />cos A.. <br />A, c <br />-B, a,, b <br />B=90'—A, a = c sin A, b = e cos A, <br />Solution of Oblique Triangles <br />Given <br />Ct <br />a sia s C <br />-2,- 3-1- <br />!z>; 9D �2 <br />�_) Z <br />z <br />_ � �A%1a4L11'•�3 <br />53 <br />TRIGONOMETRIC FORMUL1E <br />B B B <br />a c a c a <br />}` b C A b -G'A b C <br />' `Right:Triangle Oblique Triangles <br />Solution of Right Triangles <br />For Angle A. ,sin = a ,cos = ,tan = b ,cot = a ,sec = b , cosec = a <br />S Given Required <br />a,b 4,B,c tanA=6= Cot B,c= _+ =a 1+a' <br />a, o 21, B, b sin A. = a = cos B, b (c=, a) (c—a) = c 1 — <br />Q$ a ' <br />c 1. <br />A, a- <br />B, b, cB <br />(11 <br />= 90°-A, b = a cotA, e = sin A. --� <br />� A, b <br />B; a, c <br />B=90' -A a= btan A,c= b " <br />cos A.. <br />A, c <br />-B, a,, b <br />B=90'—A, a = c sin A, b = e cos A, <br />Solution of Oblique Triangles <br />Given <br />Required <br />a sia s C <br />A, B, a <br />b, c, C <br />b - , C = 180°—(A + B), c = �n <br />nnA <br />A, 2, b <br />B, c, C <br />b sin A. a sin C <br />sin B = , C = 180°—(A + B), c = <br />a sin A <br />a, b, G <br />A, B, c <br />o I (a—b) tan z (A { B) <br />• A-�=, B=180 — C, tan ,' (A --B)= , <br />a + b <br />a sin C <br />_ <br />c sin A. <br />k <br />a, b, e <br />A, B, C <br />s = 2 ,sin 1.4— <br />be ' <br />C=1801—(A+B) sin'B—� <br />ac <br />c, <br />4=z+�+c, area = �/s(s—a(8—b)(s—c) <br />.)Arca <br />)1 A, b, c <br />Arca <br />besin A <br />arca = • <br />2 <br />a2 sin B sin C <br />(, A, B, C, a <br />'Area <br />area = 2 sin A <br />REDUCTION TO HORIZONTAL <br />" <br />Horizontal distance=Slope distance multiplied by the <br />e <br />cosiuc of the vertical angle. Thus: slope distance=319.4ft. <br />Vert. angle=5' 101. From Table, Page IX. cos 5'101= <br />•zontalldistancesalsoe <br />��o0eV'Xe <br />t. <br />x Ho Slone distance8ninus slope <br />distance times (1—cosine of vertical angle). With the <br />�e <br />same figures as in the preceding example, the follow - <br />Horizontal distance <br />ingresult is obtained. Cosine 51101=.9959.1—.9959=.0041. <br />319.4X.0041=1.31. 319.4-1.31=31309 ft. <br />n' When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the <br />rise divided by twice the slope distance. Thus: rise =14 fL, <br />slope distance=302.6 ft. <br />Horizontal distance=302.6— 14 X 14 =302.6-0.32=302.28 fL <br />2 X 302.6 <br />.�' <br />MADE IN V.10, A. <br />y <br />