Laserfiche WebLink
cl <br />62 <br />TRIGONOMETRIC FORMULiE <br />v> <br />2- 6 n n 3 0 B B <br />&0 3vGG 3 <br />381 .4 G `__— /"� c a ° a c a <br />✓ O <br />C A b C A b C <br />t <br />Right Triangle Oblique Triangles- <br />' Solution of Right Triangles <br />S <br />'For Angle A. sin = a , cos = a , tan= b , cot = a , see = b , cosec = a' <br />7 g Given Required <br />a,b A,B,c tanA=b=cotB,c= a2+-{ az <br />0 <br />% �� a, 0 A, B, b sin A = — =cos B, b = c a c—a <br />¢ 0 3 1 \/(—+� )=o�1—;— <br />J <br />Z.S 8 7 I6 A, a B, b,. c B=90°—A, b = a cotA, c= sin A. <br />)�,`� Z 0/5(� <br />46 •3 7 2 Ff`� b ✓� <br />` ? A, b B, a, c B = 90°—A, a = b tan'A, c = cos A. <br />1 3 (0 5 O S f A, r, B, a, b B= 90°—A, a= c sin A, b= c cos A, <br />Solution of Oblique Triangles <br />Given Required. a sin B <br />l.( �•��� j - 51' d, B,a b, c„C b— sin A'C=180°—(A+B),c= sin <br />Dl ; <br />10\1° A,a,b B,o,C sin B=bs2A,C=180°—(A+B),c=asinC <br />dJ i sin A <br />b, C A, B, c A+B=180°— C, tan 1.(A—B)= (a—b) tan z (A+B) . <br />a + b <br />a sin C <br />c sin A <br />4 4 (09 a+b i <br />Z Cal (p. 4— S a, b, o A, B, C s = 2 "in 2A=� be <br />, <br />it ., <br />sin21B=),C=180°—(A+B) <br />�ZI a+b+c <br />a b, c Area s = 2 ,area = s(s—a s— ) (.1 1) <br />3 p g Z C7 _! 6 ¢� 9 l � A, b, c Area area = b c sin A <br />0.% r Oji 2 a2 sin B sin C <br />A, B, Q a Area area = 2 sin A <br />$ 5.8 4— s y REDUCTION TO HORIZONTAL <br />Horizontal distance=Slope distance multiplied by the <br />0 S iJ Z- cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />'T l �, Q tsnce Vert. angle =5° 101. From Table, Page IX. cos 5° 10l= <br />b 61 d 9959. Horizontal distance=319.4X.9959=318.09 ft. <br />610 c, ArSW Horizontal distance also—Slope distance minus slope <br />_ e a distance times (1—cosine of vertical angle). With the <br />A Z �, 1 �P C / O D a �l �. �i same figures as in the preceding example, the follow - <br />`f” ( Horizontal distance ing result is obtained. Cosine 50 10/=.9959.1—.9959=.0041. <br />319.4X.0041=1.31. 319.4-1.31=318.09 It. <br />�, When the rise is known, the horizontal distance is approximately:—the slope dist- <br />, ance less the square of the rise divided by twice the slope distance. Thus: rise=l4 ft., <br />4 0 g 7 7 L slope distance=302.6 ft. Horizontal distance=302.6— 14 X 14 =3026-0.32=302.28 ft. <br />3� 1 2 X 302.6 <br />.- MADE W U. & Ai <br />