Laserfiche WebLink
TRIGONOMETRIC FORMULfE <br />B I3 B <br />a a a <br />A' - <br />b 'C A.� b• C A b C <br />Right Triangle I Oblique Triangles <br />Solution of Right Triangles <br />For Angle A. • sin = ,cos = b ,tan = a ,cot = b ,sec = a , cosec = <br />c c b a b a <br />Given Required <br />a, IV A,-B;c tan A=b=cot Ae N/—al-772 = a 1 f az <br />a, c A, B, b sin A = c = cos B, b = �/ o -{-a (c—a) = c J 1— a' <br />i <br />A,,a • .B,'b; c' ' B=90°—A, b = a cotA, o= a <br />sin A. <br />A, b. B, a, c B=90 *—A;a = b tan A, c = b <br />cos A. <br />A, c B, a, b B = 90°=A, a = c sin A, b = c cos A, <br />Solution of Oblique Triangles <br />Given Required a sin B <br />A, B, a b, c, G' b = sin A , C = 180°—(A + B), o =asin O <br />sin A <br />' b sin A <br />A, a;.b B, c, C sin B= a ,C=180°—(A+B),c=asinC <br />sin A <br />a, b, C A, B, e, A+B=1800— C, tan ; (A—B)= (a—b) tan z (A+ B) <br />ab <br />asin C + <br />sin A <br />•a, b, c A, B, C s=a+b+0,sin` — A= <br />2 N b c <br />sin JB= (s a o ,C=180°—(A+B) <br />a, b, c Area 4=a+2+c, area <br />A, b, c Areab e sin A <br />area = 2 <br />a? sin B sin C <br />A; Bi Q, a Area area = 2 sin A <br />REDUCTION TO HORIZONTAL <br />4J Horizontal distance= Slope distance multiplied by the <br />cosinaree <br />Vert. angle ng ee vertical5° 101. From able slope <br />P gelIXncos 5° 10Yce =319.4 =� <br />#' oQe 9959. Horizontal distance=319.4X.9959=318.09 ft. <br />S� Apg�e a Horizontal distance also=Slope distance minus slope <br />4e distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 50 101=.9959.1—.9959=.0041. <br />319.4X.0041=1.31. 319.4-1.31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft., <br />slope distance=302.6 ft. Horizontal distance=302.6— 14 X 14 =302.6-0.32=302.28 ft. <br />2 X 302.8 <br />- MADE Ia Y. &A. <br />