Laserfiche WebLink
TRIGONOMETRICFO_RMULIE <br />�r <br />B B <br />-dfc' i c a o a c a <br />/�:I <br />� 9��`UB C — b C A b C i <br />f . <br />5 7 I �� �� J _ Right Triangle Oblique Triangles r <br />F <br />T T' /jj Solution of Right Triangles <br />a b a b " ql 3 85 y For Angle A. sin = o , cos = a , tan = b , cot = a —,sec= b , cosec = a <br />`Gillen Required <br /># , `•- t% <br />a,b A,B,c tanA=b=cotB,o= a2-{- z=a 1+a2 <br />r �_.- Def II`I• <br />? . a, a A, B, b sin A =a = cos B, b = V (T+a (c—a) = a J 1 <br />" A,' -a B; b, c B=90°—A, b = a cot A, o= sin A. <br />y A, _b B, a, c B = 90°—A, a = b'tan A, c = <br />cos A. <br />A, c B, a, b B= 90°—A, a = o sin A, b = c cos A, <br />'O 2 • �� �$? S5� , . j" Solution of Oblique Triangles <br />Given Required a sin B <br />A, B,:a b, c, Cb = sin A ' C = 180°-(A + B), c = sin.A <br />�'P' r�� A, a b B> c C sing= sa A,C= 180°—(A +_B), a = sin A <br />/1 << a, b, C A, B, c A-FB=180°—.C, tan z (A—B)= (a—b) tan 1'(A+ <br />B). <br />jasin C a+b <br />2 S 5 =T <br />63 ° =sin A <br />b a A, B, C s = a+b +o — I(s— <br />a 2 ,sin';A— VI b e <br />sinaB=�(y—aa�c ,C=180°—(A+B) <br />a+b+c <br />r� ati b, c Area s= 2 , area = VS(a—a) (s—)(8-0 <br />3.3 <br />! r� i%�f A, b; c ` Area area = b c sin A <br />2 <br />A, -Area s <br />area = a2 sinB sin <br />C <br />7 ul <br />REDUCTION TO HORIZONTAL <br />? _) 4 Horizontal distance= Slope distance multiplied by the <br />cosine of the vertical angle. Thus: slope distance=319.4Pt. <br />�• 3v_ �` 1 ta9ce Vert. angle= 50 101. From Table, Page I%. cos 50 10Y= <br />o ass . y 9959. Horizontal distance=319.4X.9959=318"09 ft. <br />5 > r��o4 An�1e CG Horizontal distance also=Slope distance minus slope <br />�-�-•-,p- -distance times (1—cosine of vertical angle). With the <br />n l� same figures as in the preceding example, the follow- <br />Horizontal distance ing result is obtained. Cosine 5° 101=.9959.1—.9959=.0041. <br />a ✓ r /e 319.4X.0041=1.31. 319.4-1.31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />tv =�) ante less the square of the rise divided by twice the slope distance. Thus: rise =14 ft., <br />i 14X14= <br />slope distance=302.6 Pt. Horizontal distance=302.6— 302.6--0.32=302.28 ft. <br />2 X 302.6' <br />M <br />MADE IN Y. S. A. <br />