Laserfiche WebLink
.V 111 <br />TABi.II IL - Radii, Ordinates and Deflections. Chord =100 ft. CURVE FORMULAS - <br />Deg. . <br />Radhm <br />Mid. <br />Ord. <br />-rt- <br />Tan. - <br />Diet. <br />Def. <br />Dist. <br />Dor ' <br />I Ft. <br />Deg. <br />Radius <br />Mid. <br />Ord: <br />T. <br />Dist. <br />Def. <br />Dist. <br />Dor <br />1 r t. <br />2°.i 7' <br />F7- <br />3° 43' <br />IOI.I$ <br />it. <br />/ <br />1° 59' <br />ft• <br />ft. <br />ft. <br />ft. <br />i <br />0'10' <br />34377. <br />.036 <br />.145 <br />.291 <br />0.05 <br />7° <br />819.0 <br />1.528 <br />6.105 <br />12.21 <br />2.10 <br />20 <br />17189. <br />.073 <br />.291 <br />.582 <br />0.10 <br />20' <br />781.8 <br />1.600 <br />6.395 <br />12.79 <br />2.20 <br />30 <br />11459. <br />.109 <br />.436 <br />.873 <br />0.15 <br />30 <br />764.5 <br />1.637 <br />6.540 <br />13.08 <br />2.25 <br />40' <br />8594.4 <br />.145 <br />.582 <br />1.164 <br />0.20 <br />40 <br />747.9 <br />1.673 <br />6.685 <br />13:37 <br />2.30 <br />50 <br />6875.5 <br />.182 <br />.727 <br />1.454 <br />0.25 <br />S <br />716.8 <br />1.746 <br />6.976 <br />13.95 <br />2.40 <br />1' <br />5729.6 <br />.218 <br />.873 <br />1.745 <br />0.30 <br />20 <br />688.2 <br />1;819 <br />7.266 <br />14.53 <br />2.50 <br />10 <br />4911.2 <br />.255 <br />1.018 <br />2.036 <br />0.35 <br />30 <br />674.7 <br />1.855 <br />7.411 <br />14.82 <br />2.55 <br />20 <br />4297.3 <br />.291 <br />1.164 <br />2.327 <br />0.40 <br />40 <br />661.7 <br />1.892 <br />7.556 <br />15.11 <br />2.60 <br />30 <br />3819.8 <br />.327 <br />1.309 <br />2.618 <br />0.45 <br />9 <br />637.3 <br />1.965 <br />7.846 <br />15'.69 <br />2.70 <br />40 <br />3437.9 <br />.364 <br />1.454 <br />2:909, <br />0.50 <br />20 <br />614.6 <br />2.037 <br />8.136 <br />16.27 <br />2.80 <br />SO, <br />3125.4 <br />.400.1.600 <br />3.200 <br />0.55- <br />30 <br />603.8 <br />2.074 <br />8.281 <br />16.56 <br />2.85 <br />a <br />2864.9 <br />.436 <br />1.745 <br />3.490 <br />0.6040. <br />593.4 <br />2.110 <br />8.426 <br />16.85 <br />2.90 <br />10 <br />2644.6 <br />.473 <br />1.891 <br />3:781.0.65 <br />10. <br />573.7 <br />21183 <br />8.716 <br />17.433.00 <br />" 20 <br />2455.7 <br />.509 <br />2.036 <br />4.072 <br />0.70 <br />'30 <br />546.4 <br />2.292 <br />9.150 <br />18.30 <br />3.15 <br />30 <br />2292.0 <br />.545 <br />2.181 <br />4.363 <br />0.75 <br />11 <br />521.7 <br />2.402 <br />9.585 <br />19.16 <br />3.30 <br />40 <br />2148:8 <br />.582 <br />2.327 <br />4.654 <br />0.80 <br />30 <br />499.1 <br />2.511 <br />10.02 <br />20.04 <br />3.45 <br />50 <br />-2022.4 <br />.618 <br />2.472 <br />4.945 <br />0.85 <br />12 <br />478.3 <br />2.620 <br />10.45 <br />20.91 <br />3.60 <br />8 " .'1910.1 <br />.655 <br />2.618 <br />5.235 <br />0.90 <br />30.459.3 <br />2.730 <br />10.89 <br />21.77 <br />3.75 <br />10: <br />1809.6 <br />.691 <br />2.763 <br />5.526 <br />0.05 <br />13 <br />441.7 <br />2.839 <br />11.32 <br />22.64 <br />3.90 <br />20 <br />1719.1 <br />'.727 <br />2.908 <br />5.817 <br />1.00 <br />30 <br />425.4 <br />2.949 <br />11.75 <br />23.51 <br />4.05 <br />30.; <br />1637.3 <br />'.764 <br />3.054 <br />6.108 <br />1.05 <br />14 <br />410.3 <br />3.058 <br />12.18 <br />24.37 <br />4.20 <br />40 <br />1562.9 <br />.800 <br />3.199 <br />6.398 <br />1.10 <br />30 <br />396.2 <br />3.168 <br />12.62 <br />25.24 <br />4.35 <br />50 <br />.1495.0 <br />.836 <br />3.345 <br />6.689 <br />1.15 <br />15 <br />383.1 <br />3.277 <br />13.05 <br />26.11 <br />4.50 <br />L'• <br />1432.7 <br />.873 <br />3.490 <br />6.980 <br />1.20 <br />30 <br />370.8 <br />3.387 <br />13:49 <br />26.97 <br />4.65 <br />10-:1375.4 <br />.909 <br />3.635 <br />7.271 <br />1.25 <br />16 <br />359.3 <br />3.496 <br />13.92 <br />27.84 <br />4.80 <br />20 <br />1322.5 <br />.945 <br />3.718 <br />7.561 <br />1:30. <br />30 <br />348.5 <br />3.606 <br />14.35. <br />28.70 <br />4:95 <br />30 <br />1273.6 <br />.982 <br />3.926 <br />7.852 <br />1.35 <br />17 <br />338.3 <br />3.716 <br />14.78 <br />29.56 <br />5.10 <br />40 <br />1228.1 <br />1.018 <br />4.071 <br />8.143 <br />1.40 <br />1S <br />319.6 <br />3.935 <br />15.64 <br />31.29 <br />5.40 <br />`-50 <br />1185.8 <br />1.055 <br />4.217 <br />8.433 <br />1.45 <br />19 <br />302.9 <br />4.155 <br />16.51 <br />33.01 <br />5.70 <br />5 <br />1146.3 <br />1.091 <br />4.362 <br />8.724 <br />1.50 <br />20, <br />287.9 <br />4.374 <br />17.37 <br />34.73 <br />6.00 <br />.10 <br />1109:3 <br />1.127 <br />4.507 <br />9.014 <br />1.5,5, <br />21 <br />274.4 <br />4.594 <br />18.22 <br />36.44 <br />6.30 <br />.20 <br />1074.7 <br />1.164 <br />4.653 <br />9.305 <br />1.60 <br />"22• - <br />262.0 <br />4.814 <br />19.08 <br />38.16 <br />6.60 <br />-•30 <br />1042.1 <br />1.200 <br />4.798 <br />9.596 <br />1.65 <br />23 <br />250.8 <br />5.035 <br />19.94 <br />39.87 <br />6.90 <br />40, <br />1011;.5 <br />1.237 <br />4.943 <br />9.886 <br />1.70 <br />24 <br />240.5 <br />5.255 <br />20.79 <br />41.58 <br />7.20 <br />50 <br />982.6 <br />1.273 <br />5.088 <br />10.18 <br />1.75 <br />25 <br />231.0 <br />5.476 <br />21.64 <br />43.28 <br />7.50 <br />a;•'- <br />9554 <br />1.309 <br />5.234 <br />10.47 <br />1.80 <br />26 <br />222.3 <br />5.697 <br />22.50 <br />44.99 <br />7.80 <br />10 <br />.929.6 <br />1.346 <br />5.379 <br />10.76 <br />1.85 <br />27 <br />214.2 <br />5.918 <br />23.35 <br />46.69 <br />8.10 <br />20 <br />905.1 <br />1.382 <br />5.524 <br />11.05 <br />1.90 <br />28 <br />206.7 <br />6.139 <br />24.19 <br />48.38 <br />8.40 <br />30 <br />881.9 <br />1.418 <br />5.669 <br />11.34, <br />1.95 <br />20 <br />199.7 <br />6.360 <br />25.04- <br />50.07 <br />8.70 <br />40 <br />859.9 <br />1.455 <br />5.814 <br />11.63 <br />2.00 <br />30 <br />193.2 <br />6.583 <br />25.88 <br />51.76 <br />9.00 <br />The middle ordinate in inches for any cord of length (C) is equal to .0012 C' <br />multiplied by the middle ordinate taken from the above table. Thus, if it <br />desired to bend a 30 ft. rail to fit a 10 degree curve, its middle ordinate should <br />be .0012X900X2.183 or 2.36 inches. <br />TABLE III. . Deflections for Sub Chords for Short Radius Curves. <br />Degree <br />of <br />Curve <br />Radius <br />50 <br />'A sub chord, <br />R =sin of Z def. angle <br />Length <br />of arc <br />for 100 ft. <br />sin. $ def. ang. <br />12.5 Ft. <br />15 Ft. <br />20 Ft. <br />25 Ft. <br />.--30°- _ <br />193.18 <br />10 5i' <br />2°.i 7' <br />2° 58' <br />3° 43' <br />IOI.I$ <br />32° <br />181.39 <br />1° 59' <br />2° 25' <br />3° Io' <br />30581 <br />101.33 <br />340 <br />171.01 <br />20 o6' <br />2° 33' <br />3° 21' <br />4° 12' <br />101.48 <br />360 <br />i61. 86 <br />2° 13' " <br />-" 2° 41' <br />3° 33' <br />4° 26' <br />ioi .66 <br />. 38°--- <br />. -153.58 _ <br />2°.20' <br />2°_49' <br />3° 44' <br />4° 40' • <br />101.85 <br />40° <br />146.19 <br />2° 27 <br />2° 57' <br />3° 55' <br />4° 54' <br />102.06 <br />42° <br />139.52 <br />20 34' <br />3° 05' <br />4° 07' <br />. _ 5° 08' `. <br />102.29 <br />44° <br />133.47. <br />2° 41� <br />3°.13' <br />4° 18' <br />5° 22' <br />102.53 <br />460 <br />1.27.97.. <br />2u 481 <br />3° 21' <br />4° 29' <br />5°36' <br />102.76 <br />480 <br />122.92- <br />2° 55' <br />3° 29' <br />4° 40` <br />50 50' <br />103.00 <br />500 <br />118.31' <br />3°02' <br />3°38' <br />4° 51 <br />6°04' <br />103.24 <br />52° <br />'114,06. <br />3°09' <br />3°46' <br />S° 02' <br />6°17' <br />103.54 <br />540 <br />110.11 <br />3° 16' <br />3° 54' <br />5° 13' <br />6° 31' <br />103.84 <br />$6° <br />106.50. <br />3° 22' <br />4° 02' <br />5023 <br />6° 44' <br />•104.14 <br />58° <br />103.14 <br />3°29' <br />4°10' <br />5°34 <br />6°57' <br />104.43 <br />600 <br />100.00 <br />30 35' <br />4° 18' <br />5044 <br />7° II' <br />104.72 <br />i T= R tan 8 I R= T cot. -1 I Chord def. = chords <br />50 tan 8 I R <br />T Sin. 8 D R = b0 <br />I <br />Sin. 8 D = 50 Sin. ' D No, chords I <br />R- E = R ex. sec ; I D <br />50 tan 13 I a <br />Sin. D = E = T tan I I Tan. def. _' chord def. <br />F T <br />The squa'of any distance, divided by twice the radius," will equal <br />the distance from tangent to curve, very nearly. <br />To find angle for a given distance and deflection. <br />+ Rule I. -.Multiply the given distance by .01745 (def, for I° for 1 ft. <br />see Table II.), and divide given deflection by the product. <br />i Rule 2. . Multiply given deflection by 57.3, and divide the product by <br />the given distance. <br />To find deflectioii for a given angle and distance. Multiply the angle <br />by ,01745, 'and' ttie product by the distance. <br />GENERAL DATA - <br />RIGHT.ANGLE TRIANGLES. ; Square the altitude, divide by twice the <br />base. Add quotient to base for hypotenuse. <br />'Given .Base ioo, Alt. Io.IO2-.200=.5. 100-x-•.5=100.5 hyp. <br />Given Hyp..Ioo,Alt. 25.252=200=3.I25. 100-3.125 =96.875 =Base. <br />Error in first example, .062; In last, .045, <br />To find Tons of Rail in one mile of track: multiply weight per yard' <br />by II, and divide by 7. <br />LEVELING. The correction -for curvature and refraction, in feet <br />and decimals of feet is equal to 0.574 d9i where d is the distance in miles. <br />The -correction for curvature alone is closely, 8d2. The comlined coi- <br />rection is negative. <br />' PROBABLE ERROR. If dd2, da, etc. are the discrepancies of various <br />results from the mean, and 1f Y-da=the sum of the squares"of these differ- <br />ences and n=the number of observations, then theprobable error of the, <br />mean= -4-06745 Ids <br />• " 1 n (n-1) <br />-SOLAR EPHEMERIS. Attention is called to the -Solar Ephemeris f0i <br />the current year; published by Keuffel & Esser Co., and furnished free of <br />charge upon request; which is 31x58 in., with about 90 pages of data very <br />useful to the Surveyor; such as the adjustments of transits, levels and <br />solar attachments; directions and tables for determining the meridian <br />and the latitude from observations on the sun and Polaris; stadia meas- <br />] , urements; magnetic declination; arithmetic constants; English and Metric <br />! <br />conversions; trigonometric f ormulas; Natural andLogarithmic Functions; <br />and Logarithms of Numbers. <br />TABLE IV. - Minutes in Decimals of a Degree. <br />1' <br />.0167 <br />11' <br />.1833 <br />21' <br />.3500 <br />31'. <br />.5167 <br />41' <br />.6833 <br />51' <br />.8500 <br />2 <br />.0333 <br />12 <br />.2000 <br />22 <br />.3667 <br />32 <br />.5333 <br />42 <br />.7000 <br />52 <br />.8667 <br />a <br />.0500 <br />13 . <br />.2167 <br />23 <br />.3833 <br />33 <br />.5500 <br />43 <br />.7167 <br />53 <br />.8833 <br />4 <br />".0667 <br />14 <br />.2333 <br />24 <br />.4000 <br />34 <br />.5667 <br />44 <br />.7333 <br />54 <br />•.9000 <br />5 <br />.0833 <br />15 <br />.2500 <br />25 <br />.4167 <br />35 <br />.5833 <br />45 <br />.7500 <br />55 <br />.9167 <br />6 <br />.1000 <br />16 <br />.2667 <br />26 <br />.4333 <br />36 <br />.6000 <br />46 <br />.7667 <br />56 <br />.9333 <br />7 ," <br />.1167 <br />17- <br />.2833 <br />27 <br />.4500: <br />37 <br />.6167 <br />47 <br />.7833 <br />57 <br />.9500 <br />8 <br />.1333 <br />1S <br />.3000 <br />28 <br />.4667 <br />38 <br />.6333 <br />48 <br />.5000 <br />58 <br />.9667 <br />9 <br />.1500 <br />19 <br />.3167 <br />.4833'. <br />39 <br />.6500 <br />.49 <br />.8167 <br />59 <br />. .9833 <br />10 <br />.1667 1 <br />20 <br />.3333 1130 <br />.29 <br />J .5000 <br />40 <br />1 .6667 11 <br />50 <br />1 8333 <br />60 <br />1.0000 <br />TABLE V. -.Inches in Decimals of a Foot. <br />1-16 <br />3-32 <br />3-16 <br />5-16 <br />% <br />% <br />?� <br />0052 <br />.0078 <br />.0'1'104 <br />.0156 <br />.0208 <br />.0260 <br />.0313 <br />.0417 .0521- .0625• <br />0729 <br />1 <br />2 <br />3 <br />4 <br />5 <br />6 <br />7 <br />8 9 <br />10 <br />11 <br />.0833- <br />.1667 <br />.2500 <br />.3333 <br />.4167 <br />.5000 <br />.5833 <br />.6667- .7500 <br />.8333 .9167- <br />