Laserfiche WebLink
CURVE TABLES <br />Published by KEUFFEL & ESSER CO. <br />HOW TO USE CURVE TABLES <br />Table I. contains Tangents and Externals to a 1° curve. Tan. and <br />Ext. to any other radius may be found nearly enough, by dividing. the Tan. <br />.or Ext. opposite the given Central Angle by the given degree of curve. <br />To find Deg. of Curve, having the Central, Angle and Tangent: <br />Divide Tan. opposite the given Central Angle by the given Tangent. <br />To find Deg. of Curve, having the Central Angle and External: <br />Divide Ext. opposite the given Central Angle by the given External. <br />To find Nat. Tan. and Nat. Ex. Sec. for any angle by Table I.: Tan. <br />or Ext. of twice the given angle divided by the radius of a 1° curve will <br />be the Nat. Tan. or Nat. Ex. Sec. <br />EXAMPLE <br />Wanted a Curve with an Ext. of about 12 ft. Angle <br />of Intersection or I. P.=230 20' to the -R. at Station <br />542+72. <br />Ext. in Tab. I opposite 23° 20' =120.87. . <br />120.87=12=10.07. Say a 10° Curve. <br />Tan. in Tab. I opp. 23° 20'= 1183.1 <br />1183.1=10 =118.31. <br />Correction for A. 23° 20' for a 10° Cur. =0.16 <br />118.31+0.16 =118.47 =corrected Tangent. <br />(If corrected Ext. is required find in same way) <br />Ang. 23°20'=23.33°=10=2.3333=L. C. <br />2° 19 def. for sta. 542 I. P. =sta. 542+72 <br />40 49'2'= " " " +50 Tan. = 1 .18.47 <br />7° 192' _ 543 " " 543 B. C.=sta. 541+53.53 <br />9° 492'= <br />110 40' _ " " 543+ L. C. = 2 .33.33 <br />86.86 E. C.=Sta. 543+86.86 <br />100-53.53=46.47X3'(def. for 1 ft. of 10° Cur.) = 139.41'= <br />20.192'=def. for sta. 542. <br />Def. for 50 ft.=2°-30' for a 10°. Curve. <br />Def. for 36.86 ft. =1° 502' for a 10° Curve. <br />g <br />g7 <br />sed <br />S <br />g, 313. <br />Y ty`C. <br />7 ge� <br />A—, 1 <br />.67 <br />i <br />7 <br />�L <br />i <br />1 <br />CURVE TABLES <br />Published by KEUFFEL & ESSER CO. <br />HOW TO USE CURVE TABLES <br />Table I. contains Tangents and Externals to a 1° curve. Tan. and <br />Ext. to any other radius may be found nearly enough, by dividing. the Tan. <br />.or Ext. opposite the given Central Angle by the given degree of curve. <br />To find Deg. of Curve, having the Central, Angle and Tangent: <br />Divide Tan. opposite the given Central Angle by the given Tangent. <br />To find Deg. of Curve, having the Central Angle and External: <br />Divide Ext. opposite the given Central Angle by the given External. <br />To find Nat. Tan. and Nat. Ex. Sec. for any angle by Table I.: Tan. <br />or Ext. of twice the given angle divided by the radius of a 1° curve will <br />be the Nat. Tan. or Nat. Ex. Sec. <br />EXAMPLE <br />Wanted a Curve with an Ext. of about 12 ft. Angle <br />of Intersection or I. P.=230 20' to the -R. at Station <br />542+72. <br />Ext. in Tab. I opposite 23° 20' =120.87. . <br />120.87=12=10.07. Say a 10° Curve. <br />Tan. in Tab. I opp. 23° 20'= 1183.1 <br />1183.1=10 =118.31. <br />Correction for A. 23° 20' for a 10° Cur. =0.16 <br />118.31+0.16 =118.47 =corrected Tangent. <br />(If corrected Ext. is required find in same way) <br />Ang. 23°20'=23.33°=10=2.3333=L. C. <br />2° 19 def. for sta. 542 I. P. =sta. 542+72 <br />40 49'2'= " " " +50 Tan. = 1 .18.47 <br />7° 192' _ 543 " " 543 B. C.=sta. 541+53.53 <br />9° 492'= <br />110 40' _ " " 543+ L. C. = 2 .33.33 <br />86.86 E. C.=Sta. 543+86.86 <br />100-53.53=46.47X3'(def. for 1 ft. of 10° Cur.) = 139.41'= <br />20.192'=def. for sta. 542. <br />Def. for 50 ft.=2°-30' for a 10°. Curve. <br />Def. for 36.86 ft. =1° 502' for a 10° Curve. <br />