Laserfiche WebLink
��0_1131 <br />+ts <br />4 �?a <br />I <br />_ CURVE TABLES <br />+ Published by KEUFFEL & ESSER CO. <br />HOW TO USE CURVE TABLES <br />Table I. contains Tangents and Externals to a •1° curve. Tan: and <br />- Ext. to any other radius maybe found nearly enough, by dividing the Tan. <br />or Ext. opposite the given Central Angle by the given degree of curve. <br />- • To find --Deg. of Curve, having the Central Angle and Tangent: <br />Divide Tan..opposite the given Central Angle by the given Tangent. <br />-To find Deg. of Curve, -having the Central. Angle .and External: <br />Divide Ext. opposite the given Central Angle by the given External. <br />- To find Nat. Tan. and -Nat. Ex. Sec. for any angle byy Table I.: Tan. <br />or Ext. of twice the given - angle divided by the radius -of a•1° curve will <br />be the Nat. Tan. or Nat. Ex. Sec. <br />EXAMPLE. <br />Wanted a Curve with an Ext. of about 12 ft. Angle <br />of Intersection or I. P. =23° 20' to the R: at Station <br />542+72. <br />Ext. in Tab.- I opposite 23° 20' =120.87 <br />? 120.87 =12 =10:07. Say a 10° Curve. <br />Tan. in Tab. I opp. 23' 20'= 1183.1 <br />1183.1=10 =118.31. <br />.Correction for A. 23° 20' for a 10° Cur. =0.16 <br />118.31+0.1-6 =118.47 =corrected Tangent. <br />(If corrected Ext. is required find in same way) <br />Ang. 236 20'=23.33°=10=2.3333=L. C. <br />2° 19 z'=def. for std. 542 I. P. =sta. 542+72 <br />4049-'= a+50 Tan._ 1 .18.47 <br />7° 192'= " " 543 <br />1,— " B. C.=sta. 541+53.53 <br />9 '491 - +50 L. C. = 2 .33.33 <br />11° 40'= " :" 543+ <br />86.86 E. C.=Sta. 543-+86.86 <br />100=53.53=46.47X3'(def. for 1 ft. of 10° Cur.)=139.41'= <br />2° 192'=def. for sta. 542. <br />Def: for 50 ft. =2° 30' for a 1W Curve. <br />Def. for 36.86 ft. =10 502' for a 100 Curve. <br />4� x' <br />• A IAAn9.23°20' _ <br />I Al <br />1 <br />to°curve <br />4 <br />. i. <br />-�� <br />i, <br />a <br />,lig+i <br />i. <br />��0_1131 <br />+ts <br />4 �?a <br />I <br />_ CURVE TABLES <br />+ Published by KEUFFEL & ESSER CO. <br />HOW TO USE CURVE TABLES <br />Table I. contains Tangents and Externals to a •1° curve. Tan: and <br />- Ext. to any other radius maybe found nearly enough, by dividing the Tan. <br />or Ext. opposite the given Central Angle by the given degree of curve. <br />- • To find --Deg. of Curve, having the Central Angle and Tangent: <br />Divide Tan..opposite the given Central Angle by the given Tangent. <br />-To find Deg. of Curve, -having the Central. Angle .and External: <br />Divide Ext. opposite the given Central Angle by the given External. <br />- To find Nat. Tan. and -Nat. Ex. Sec. for any angle byy Table I.: Tan. <br />or Ext. of twice the given - angle divided by the radius -of a•1° curve will <br />be the Nat. Tan. or Nat. Ex. Sec. <br />EXAMPLE. <br />Wanted a Curve with an Ext. of about 12 ft. Angle <br />of Intersection or I. P. =23° 20' to the R: at Station <br />542+72. <br />Ext. in Tab.- I opposite 23° 20' =120.87 <br />? 120.87 =12 =10:07. Say a 10° Curve. <br />Tan. in Tab. I opp. 23' 20'= 1183.1 <br />1183.1=10 =118.31. <br />.Correction for A. 23° 20' for a 10° Cur. =0.16 <br />118.31+0.1-6 =118.47 =corrected Tangent. <br />(If corrected Ext. is required find in same way) <br />Ang. 236 20'=23.33°=10=2.3333=L. C. <br />2° 19 z'=def. for std. 542 I. P. =sta. 542+72 <br />4049-'= a+50 Tan._ 1 .18.47 <br />7° 192'= " " 543 <br />1,— " B. C.=sta. 541+53.53 <br />9 '491 - +50 L. C. = 2 .33.33 <br />11° 40'= " :" 543+ <br />86.86 E. C.=Sta. 543-+86.86 <br />100=53.53=46.47X3'(def. for 1 ft. of 10° Cur.)=139.41'= <br />2° 192'=def. for sta. 542. <br />Def: for 50 ft. =2° 30' for a 1W Curve. <br />Def. for 36.86 ft. =10 502' for a 100 Curve. <br />4� x' <br />• A IAAn9.23°20' _ <br />I Al <br />1 <br />to°curve <br />4 <br />. i. <br />