Laserfiche WebLink
4, ! TRIGONOMETRIC FORMULAE <br />B r ` B <br />` <br />A'' : bA A C <br />C b C b J� <br />Right Triangle Oblique Triangles - <br />/�/G Solution of Right Triangles <br />a -b a b` c c <br />For Angle A. - sin= , cos - — tan= , cot — osec <br />,sec = —, c = <br />�• c b a b a <br />Given Required <br />q t 21 <br />a,b A,B,'c tan A=b=cotB,c= a +bb?=a 1 az <br />7. [s — — . — -- -- �7� a, c A, B, b sin A = = cos B, b = \/—(c +a) (c—a) a� <br />o <br />A, a B, b, c B=90°—A, b = acotA,c= a <br />J sin A. <br />p0�' l 001 �Lo A, b B, a, e. B=90'—A, = btanA,c= cos A. . <br />•l zQ7s b.� D �i ..zOC-�a�3% 5 `t A, c B, a, b B=90°—A, a = csinA, b= e cos A; <br />3 n 5^ 6 x Solution of Oblique -Triangles <br />-Xff' Given Required _ a sin B — <br />4r7 ��53� . ��0 A' B'a b' C b sinA'C=180°—(A+I3)�c=asinC <br />sin A <br />Z 3. 5 a (7 56 �r �T 3 ,A, d," b B, c> .L' sin B= b Sian A,C = 180°—(A ¢-B),,, = sin A <br />t�// 0 1 (a -b) tan � (A+B) <br />Z ia, b, C �, B, c A+B-180= C, tan a (A—B)— <br />(� a b ' <br />} . 7, T3 sin A <br />b c A, B, C s=a+b+c �(s_ b)(s—c <br />7 ,sin ZA- <br />2 b c <br />j s—a s—c <br />M. sin'B=�( )( ),C_180°—(A B) <br />i / ' ,� ac <br />Ub F Hca, b, c Area s= +2+ ,area = s(s—a s—b)(s=c <br />)A, b, c Area area, = b c sin A <br />��. 2 <br />Cq0 CoJ 1 ,�� 9z41 'h_ az sin B sin C <br />A, B, C, a Area area 2 sin A <br />Y. REDUCTION TO HORIZONTAL <br />Horizontal distance= Slope distance multiplied. by the <br />/ r —' 11+ cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />(o ' tante Vert. angle =5° 101. From Table, Page IX. cos 5° 10'= <br />�A� j,�✓ © 2 r� 6 �\i e ass _ y 9959. Horizontal distance=319.4X.9959=318.09 ft. <br />!lIJJJ $fop ogle Horizontal distance also=Slope distance minus slope <br />}� P a distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />i.. b .• r� : Horizontal distance ing result is obtained. Cosine 51 101=.9959.1=.9959=.0041. <br />td 319.4X.0041=1.31. 319.4-1.31=318.09 ft. <br />r� When the rise is known, the horizontal distance is approximately:—the slope dist- <br />q 1 \ ante less the square of the rise divided by twice the slope distance. Thus: rise=14 ft., <br />�1g2l 1; 3 k, slope distance=302.6 ft. Horizontal distance=302.6— 14 X 14 =302.6--0.32=302.28 fL <br />2 X 302.6 <br />K <br />woe u, U. S.A.s. ti <br />