Laserfiche WebLink
. cd/)S <br />TRIGONOMETRIC FORMULeE <br />!c a c a c a <br />�. <br />i <br />A�b <br />i'Right Triangle. Oblique Triangles <br />Solution of Right Triangles <br />a b a b a c <br />For Angle A. sin = e , cos = c , tan = , cbt = a , see = b , cosec = a <br />Given - Required z <br />a,b A,B,c tan A=�--cotB,a= az+bz=a .1+'(Z <br />R <br />{ a,0 A,B,b sin A=C=cos B,b=�6(a o—a)=c1—`per <br />a <br />A, a. <br />A, b <br />A, c <br />Given <br />A, B, a <br />A,a,b- <br />B, b, c <br />B=90°—A, b = a cotA, c= sin A. <br />l% <br />b <br />B, a, c <br />B = 90°—A, a = b tan A, c = <br />cos A. <br />B, a, b <br />B=90°—A,a=cSin A,b=eco6A, <br />�a <br />gara:9�sat�•.R <br />r <br />�aaSGn, <br />~ }'•G <br />°� <br />��iQ 60 -5- <br />P1 i�gg+t%'4! <br />��- <br />B, c, C' <br />. b sinA asin C <br />sin B = , C = 180°—(A -i- B), o = <br />p^ ,,• <br />a sin A <br />d <br />TRIGONOMETRIC FORMULeE <br />!c a c a c a <br />�. <br />i <br />A�b <br />i'Right Triangle. Oblique Triangles <br />Solution of Right Triangles <br />a b a b a c <br />For Angle A. sin = e , cos = c , tan = , cbt = a , see = b , cosec = a <br />Given - Required z <br />a,b A,B,c tan A=�--cotB,a= az+bz=a .1+'(Z <br />R <br />{ a,0 A,B,b sin A=C=cos B,b=�6(a o—a)=c1—`per <br />a <br />A, a. <br />A, b <br />A, c <br />Given <br />A, B, a <br />A,a,b- <br />B, b, c <br />B=90°—A, b = a cotA, c= sin A. <br />l% <br />b <br />B, a, c <br />B = 90°—A, a = b tan A, c = <br />cos A. <br />B, a, b <br />B=90°—A,a=cSin A,b=eco6A, <br />�a <br />Solution of Oblique Triangles '- <br />r <br />Requiredj' <br />' C = 180°—(A -1- B),'c = <br />sin A aiii r1- <br />��- <br />B, c, C' <br />. b sinA asin C <br />sin B = , C = 180°—(A -i- B), o = <br />p^ ,,• <br />a sin A <br />d <br />(a—b) tan ' <br />b, a A, B, c A;, B -180°—C, tan J(A—B)= <br />a sin C + <br />c= sinA <br />ds, b, c A, B, C s—a++c,sinA—�{) <br />i <br />be <br />sin JB=Aa(`c ) , C=180°—(A+B) <br />ia, b, c Area s= 2 , area <br />( A, b, c Area area = b c aim A <br />t 2 <br />a4 sin B sin a <br />A, B, C,a Area area = 2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance=Slope distance multiplied bs, the <br />cosine of the vertical angle. Thus: slope distance r310.4 ft. <br />tQfice Vert. ariale=5110'. From Table, Page IX. cos 5° 10'= <br />I: 3�S m 9959. Horizontal distance=319.4X.9959=318.09 ft. <br />!P P 5,ope Age distan ettimestU—cosine ofIsG= Slope verticalangle).distance 1slope <br />e same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 50 10'=.9959. 1—.9959=.0041. <br />319.4><.0041=1.31.319.4-1.81=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft., <br />slope distance=302.6 it. HorizontaI distance=3026— 14 X 14 =502,9-0.32=902.28ft. <br />2X=6 <br />MADE IN U.S.A. <br />