Laserfiche WebLink
i7IIF <br />TABLE IL - Radii, Ordinates and Deflactions. Chord =100 ft. <br />Dag <br />Radius <br />Mid. <br />Ord. <br />Tan. <br />Diet. <br />Def. <br />Dist. <br />Dd. <br />11Y6. <br />Deg. <br />Rediae <br />Mid. <br />Ord. <br />Tan <br />Dist. <br />Def. <br />'Diet. <br />D' <br />1f r <br />193.18 <br />t.t. <br />2° 17' <br />2° 58' <br />3°43' <br />101.15 <br />320 <br />t. <br />t. <br />t, <br />t, - <br />' <br />0'10' <br />34377. <br />.036 <br />.145 <br />.291 <br />0.u5 <br />7" <br />819.0 <br />1.528 <br />6.105 <br />12.21 <br />2.10 <br />20 <br />17189. <br />.073 <br />.291 <br />.582 <br />0.10 <br />20'781.8 <br />3° 44' <br />1.600 <br />6.39512.79 <br />4o° <br />2.20 <br />30 <br />11459, <br />.109 <br />.436 <br />.373 <br />0.15 <br />30 <br />764.5 <br />1.637 <br />6.540 <br />13.08 <br />2.25 <br />40 <br />8594.4 <br />.145 <br />.582 <br />1.[64 <br />0.20 <br />40 <br />747.9 <br />1.673 <br />6.685 <br />.13.37 <br />2.30 <br />50 <br />6875.5 <br />.1821 <br />122.92 <br />1.454 <br />0.25 <br />-8 <br />716.8 <br />1.746 <br />6.976 <br />13.95 <br />2.40 <br />1 <br />6729.6 <br />.218 <br />.873 <br />1.745 <br />0.30 <br />20 <br />658.2 <br />1.819 <br />7.266.14.53 <br />103.54 <br />2.50 <br />10 <br />4911.2 <br />.255 <br />1.018 <br />2.036 <br />0.35 <br />30 <br />674.7 <br />1.8-55 <br />7.411 <br />14.82 <br />2.55 <br />20 <br />4297.3 <br />.291 <br />1.164 <br />2.327 <br />0.40 <br />40 <br />661.7 <br />1.892 <br />7.556 <br />15.11 <br />2.90 <br />30 <br />3819.8 <br />.327 <br />1.309 <br />2.618 <br />0.45 <br />9 <br />637.3 <br />1.965 <br />7.846 <br />15.69 <br />2.70 <br />40 <br />3137,9 <br />.364 <br />1.454 <br />2.909 <br />0.50 <br />- 20 <br />614.6 <br />2.037 <br />8.136 <br />16.27 <br />2.80 <br />50 <br />3125.4 <br />..400 <br />1.600 <br />3.200 <br />0.55 <br />30 <br />603.8 <br />2.074 <br />8.281'16.56 <br />2.85 <br />2 <br />2864.9 <br />.436 <br />1.745 <br />3.490 <br />0.60 <br />40 <br />593.4 <br />2:110 <br />8.426 <br />16,55 <br />2.90 <br />10 <br />2644,6 <br />.473 <br />1.891 <br />3.781 <br />0,65 <br />10 <br />573.7 <br />2.183 <br />8.716 <br />17.43 <br />3.00 <br />20 <br />2155.7 <br />.509 <br />2.036 <br />4.072 <br />0.70 <br />30 <br />546.4 <br />2.292 <br />9.150 <br />18.30 <br />3-15 <br />30 <br />2292,0 <br />.545 <br />2.181 <br />4.363 <br />0.75 <br />11 <br />521.7 <br />2.402 <br />9.585 <br />19.16 <br />3.30 <br />40 <br />2148.8 <br />.582 <br />2.327 <br />4.654 <br />0.80 <br />30 <br />409.1 <br />2.511 <br />10.02 <br />20.04 <br />3:45 <br />50 <br />2022.4 <br />.618 <br />2.472 <br />4.945 <br />0.85 <br />12 <br />478.3 <br />2.620 <br />10.45 <br />20.01 <br />3.60 <br />a <br />1910.1 <br />.655 <br />2.618 <br />5.235 <br />0.90 <br />`30 <br />459.3 <br />2.730 <br />10.80 <br />21.77 <br />3-75 <br />10 <br />1 1809.6 <br />.691 <br />2.763 <br />5.526 <br />0.95 <br />13 <br />441.7 <br />2.839 <br />11.32 .22.64.3`.90 <br />20 <br />17L9.1 <br />.727 <br />2.908 <br />5.817 <br />1.00 <br />30 <br />425.4 <br />2.949 <br />11.75 <br />23.51 <br />4.05 <br />30 <br />1637.3 <br />.764-3.054 <br />6:108 <br />1.05 <br />14 <br />410.3 <br />3.058 <br />12.18 ' <br />24.37 <br />4.20 <br />40 <br />1562.9 <br />:800 <br />3.199 <br />6.398 <br />1.10 <br />30 <br />396.2 <br />3.168 <br />12.62 <br />25.24 <br />4.35 <br />50 <br />1495.0 <br />.S36 <br />3.345 <br />6.689 <br />1.15 <br />15 <br />383.1 <br />3.277 <br />13.05''-'26.11 <br />4.50 <br />4 <br />1132.7 <br />.873 <br />3,490 <br />6.930 <br />1.2030 <br />370.8 <br />3.387 <br />13.40 <br />26.97 <br />4.65 <br />10 <br />'1375.4 <br />.909 <br />3.635 <br />. 7.271 <br />1.25 <br />16 <br />359.3 <br />3.496.13:92 <br />27.84 <br />4.80 <br />20 <br />1322.5 <br />' .945 <br />3.718 <br />7.561 <br />1.30 <br />30 <br />348.5 <br />3.606 <br />14.35 <br />28.70 <br />4.95 <br />30 <br />1273.6 <br />.982 <br />3.926 <br />7.852 <br />1.35 <br />11 <br />338.3 <br />3.716 <br />14.78 <br />29.56 <br />5.10 <br />40 <br />1228.1 <br />1.018 <br />4.071 <br />8.143 <br />1.40 <br />18 <br />319.6 <br />3.935 <br />15.04 <br />31.29 <br />5.40 <br />50 <br />1185.8 <br />1.055 <br />4.217 <br />8.433 <br />1.45 <br />10 <br />302.9 <br />4.155 <br />16.51. <br />33.01 <br />5.70 <br />5 <br />1146.3 <br />1.091 <br />4.362 <br />8.724 <br />1.50 <br />20 <br />287.9 <br />4.374 <br />17.37 <br />34.73 <br />6.00, <br />10 <br />1109.3 <br />1.127 <br />4.507 <br />9..014 <br />1.55 <br />21 <br />274:4 <br />4.594 <br />18.22 <br />36.44 <br />6.30 <br />20 <br />1074.7 <br />1.164 <br />4.653 <br />9.305 <br />1,60 <br />22 <br />262.0 <br />4.814 <br />19.08 <br />38.16 <br />6.60 <br />30 <br />1042,1 <br />1.200 <br />4,798 <br />9.596 <br />1.65 <br />23 <br />250.8 <br />5,033 <br />29.94 <br />39.87 <br />6.90 <br />40 <br />1011,5 <br />1.237 <br />4,943 <br />9.886 <br />1.70 <br />24 J <br />240.5 <br />5.25.5 <br />20.70 <br />41-58 <br />7.20 <br />50 <br />982.6 <br />1.273 <br />5.088 <br />WAS <br />'1.75 <br />26 { <br />231.0 <br />5.476 <br />21.64- <br />43.28 <br />7.50 <br />e <br />955.4 <br />1.309 <br />5.234 <br />10.47 <br />1.80 <br />26 / <br />222.3 <br />5.697 <br />22.50 <br />44.99 <br />7.80 <br />10 <br />929.6 <br />1.346 <br />5.379 <br />10.76 <br />1.85 <br />27f <br />214.2 <br />0.018 <br />23.35 <br />46.69 <br />8.10 <br />20 <br />905.1 <br />1.382 <br />5.524 <br />11.05 <br />1.90 <br />28 <br />206.7'4',.139 <br />24.19 <br />48.38 <br />8.40 <br />30 <br />881.9 <br />1.418 <br />5.669 <br />11,34 <br />1.95 <br />29 <br />199.7 <br />6.300 <br />25.04 <br />50.07 <br />8.70 <br />40 <br />859,9 <br />1.455 <br />5.814 <br />11.63 <br />2.00 <br />30 <br />193.2 <br />6.583 <br />25.88 <br />51.76 <br />9.00 <br />The middle ordinate1�n inches for any cord of length (ti) is equal to .001`2 U' <br />multiplied by the middle ordinate taken from the above table. -Thus, if it <br />desired to bend a 30 ft. rail to fit a 10 degree curve, its middle ordinate should <br />be .0012X90OX2.183 or 2.36 inches. <br />TABLE III. Deflections for Sub Chords for Short Radius Curves. <br />De ree <br />f50 <br />Radius <br />sub chord , <br />R =sin of a def. angle <br />Length <br />of arc <br />Curve <br />sin.I def, ang. <br />12.5 Ft. <br />15 Ft. <br />20 Ft, <br />25 Ft. <br />for IOO ft. <br />30° <br />193.18 <br />1° 511 <br />2° 17' <br />2° 58' <br />3°43' <br />101.15 <br />320 <br />181.39 <br />I° s�, <br />2' �5. <br />3° lo'... <br />3° 58' <br />101.33 <br />34° <br />171.01 <br />2° OG' <br />2° 331 <br />3° 21' <br />4° 12' <br />101.48 <br />36° <br />161.80 <br />2' 13' <br />2° 41 <br />3° 33' <br />40 26' <br />lot .66 <br />38° <br />153.58 <br />2° 20' <br />20 49' <br />3° 44' <br />-45.40' <br />101.8; <br />4o° <br />-146.19 <br />2° 27' <br />2° 57'. <br />3° 5S' <br />4° 5&' <br />[o2.o6 <br />42° <br />139.52 <br />=° 34' <br />3° 05' <br />4° 07' <br />5° 08 <br />102.29 <br />44` <br />133.47 <br />2° 41' <br />3° 13' <br />4° 18' <br />5° 22' <br />102.53 <br />46° <br />127.97 <br />2° 48' <br />3° 21' <br />4° z9' <br />5° 36' <br />102.76 <br />48° <br />122.92 <br />20 55., <br />3° 29` <br />4° 40' <br />5° 50' <br />103.00 <br />500 <br />118.31 <br />3° 02' <br />3° 38' <br />4° 51' <br />6° 04' <br />103, �4 <br />5z° <br />114.0G <br />3°.og' <br />3° 46' <br />S° oz.' <br />6° 17 <br />103.54 <br />54° <br />110. t1. <br />3° 16' <br />3° 54' <br />S° 13' <br />6°31 <br />103.84 <br />56 <br />lo6.5o <br />3° 22'- <br />4° 02' <br />5.23 1 <br />6° 44 <br />104.14 <br />58' <br />103-143' <br />29' <br />4° lo' <br />5° 34 <br />b° 576 <br />144.43 <br />6o° <br />loo.06 <br />3° 35' <br />4° 18' <br />5° 44 <br />7° [ 1' <br />10,1.72 ii <br />Ix <br />CURVE FORMULAS <br />T= R tan 2 I R= T cot. 2' 1 chord' <br />_ 5o tan I I Chord def. _ <br />p Sin. 2 D R= 50 R <br />a <br />-Sing 2. D = go Sm. D No. chords = I <br />It E -=Rex. sec I D <br />Sin, '2D =got 7 2 I E - q tan } ITan. def. _.I chord def. <br />The square of any distance, divided by twice the -radius, will equal <br />the distance from tangent to curve, very nearly. <br />To find angle for a given distance and deflection. <br />Rule I.Multiply the given distance by .01745 (def. for 0 for 1 ft. <br />see Table II.), and divide given deflection by the product. <br />Rule 2. Multiply given deflection by 57.3, and divide the product by <br />the given distance.. <br />:= a - To find deflection for a given angle and distance. -Multiply the anglc. <br />°U,y,.bi745, and the product by the distance. <br />GENERAL DATA <br />RIG1;T ANGLE 1 R1ANGLFS, Square the altitude, divide by twice -the <br />base. Add quotient to base for hypotenuse. <br />Given Base loo, Alt. 10-10' 200=.5. loo+.g=1oo.5 hyp, <br />.Given Hyp. loo, Alt. 25.258_200=3.125.''.-]()0-3.125=96.87,5=Base. <br />Er_or,in,first example,,,00a; to last, .045. <br />To find `Tol s of Rail In'onZ�,iiile of track: multiply weight per yard <br />by 11, and _divide by'7 <br />1.,EVELING. The correction for curvature and refraction, in feet <br />and decimals of feet -is equal to 0.574d2, where d is the distance in miles. <br />7'he correction for curvature alone is- closely, 'ad'. The combined cor- <br />rection, is negative. <br />1 PROBABLF ERROR.- If d,, d2, d,, etc. are the discrepancies of various <br />restilts from the mean, and if Ede=the sum of the squares of these differ- <br />ences and n=ihe number of observations, then the probable error of the <br />mean f J;d 2 <br />SOLAR Ertmmukis. Attention is calledto the Solar Ephemeris for <br />the current' year, published by Kcuffel & Esser Co., and furnished upon <br />request., This handy booklet, 36x6 in., has about 190 pages of data very <br />useful to the Surveyor; such as the adjustments of transsts, levels and solar <br />attachments; directions and tables for determining the meridian and the <br />latitude from observations on the sun and Polaris; stadia measurements; <br />magnetic declination; arithmetic constants, etc. <br />TAFIVE fV--Minutes in Decimals of a Degree. <br />1/ <br />.0167 <br />W <br />211 <br />.3500 <br />311 <br />.5167 <br />411 <br />,6833 <br />511 <br />.8500 <br />1.2 <br />.0333 <br />12 <br />_.1833 <br />2000 <br />22 <br />.3667 <br />32 <br />.5333 <br />42 <br />.7000 <br />52 <br />.8667 <br />3 <br />.0500 <br />13 <br />2167 <br />23 <br />.3833 <br />33 <br />.5500 <br />43 <br />.7167 <br />53 <br />.8833 <br />-4 <br />.0667 <br />14 <br />.2333 <br />24 <br />.4000 <br />34 <br />.5667 <br />44 <br />.7333 <br />54 <br />-9000 <br />5 <br />.083.3 <br />15 <br />.2500 <br />25 <br />.4167 <br />35 <br />.5833 <br />45 <br />.7500 <br />55 <br />9167 <br />6 <br />.1000 <br />16 <br />.2667 <br />26 <br />.4333 <br />36 <br />.6000 <br />46- <br />.7667 <br />56 <br />'1333 <br />7 <br />..L167 <br />17 <br />.2833 <br />27 <br />.4500 <br />37 <br />'.61;57 <br />47 <br />-7833 <br />57 <br />.9500 <br />e1333 <br />18 <br />.3000 <br />28 <br />.4667 <br />38' <br />.6333 <br />48 <br />.8000 <br />58 <br />.9667 <br />s <br />.1500 <br />19 <br />.3167 <br />29 <br />.4833 <br />39 <br />.6500 <br />49 <br />.8167 <br />59 <br />.9833 <br />10 <br />.1667 <br />20 <br />,.3331 <br />30 <br />,.5000 11 <br />40 <br />.6667 11 <br />50. <br />1 .8333 <br />60 <br />1.0000 <br />TAH1,1`1 V. --I uCh(-S in Decimals of a <br />toot. <br />1-16 <br />3-32 5'a <br />3-16 <br />1• <br />5-1 G- <br />f <br />:� <br />4'a <br />a <br />.0052 <br />I .0078 .0104 <br />.01.56 <br />.0208 <br />.0260 I <br />.0313 <br />.0417 <br />.0521 <br />.0625 <br />.0729 <br />-1 <br />I <br />6 1 <br />7 <br />S <br />9 <br />10 <br />11 <br />.33 <br />08 <br />Ij <br />.1667 .25 00 <br />.3 :333 <br />.41:i67 <br />.2000 <br />.5833 <br />.6667 <br />-7.500 <br />.8333 <br />.9157 <br />