Laserfiche WebLink
TRIGONOMETRIC FORMUL/E <br />B 8 <br />i a a <br />?J, 1. y 35a y s Z� Right Triangle Oblique Triangles <br />Solution of Bight Triangles <br />D <br />p�__r` For An le A. sin = a a b e a <br />,I '31 {y g/ @ ep,/ �, g e , coo = ,tap = b' .cot = a , Bec = b, cosec = <br />1'o' y r' �'+a"`%. C7 I Given Required a <br />/% ® ;j � 1�a _, 3� c?� ( _ a, b.. A, B ,c tan = =._cot B; c = ax+ s = a 1 x <br />t� ABdO,BinA coo Bb e a' <br />3le <br />02 <br />d 39� �f / f f'' %'I ) A, a�� '=B, b, c B=90°—A, b = a cotA, c= a. <br />6� � sin A. <br />L <br />_ A.b •11,a, c ��=90°—A.a=btan A,c= <br />7! _ <br />� Cos A. <br />[ f J .y d :, a :_c ` A, ° B. a, L B=90°—A, a = c sin A, b'= cos A, <br />f .a a a <br />r�I 4$. !l <br />�I/0",5 ! t�¢4 q $ �� �tj'" ` ! Solution of Oblique' Triangles <br />ft Giren Required <br />4 r� > �1/� 1� � � :` { A, B; a b, c, C b = a sin B C = 180°—(A + B) a Bin C - <br />L i Bing ' o — sin,A <br />=flz a .0=180'—(A+e),c Y <br />��f� A, a, b. B, c, C Bin B— Bin A train G <br />„!i '��• G jj�.�'l Y "�' a sin A <br />1, <br />q, b, r' A, B, c A+B-180°-0, tsn: I B)— a—b) tan (A+B) <br />B) <br />I'I !S~ y"jl.p l ra r3�-— 4!= o =Jain C a + b <br />a.�:�/ }�✓ �'� lain A <br />.77 <br />�i - �� �!'S ��� r 6, `br G _'Ar , �i S—a+&+ <br />Tb �, Bin JA— (S (g_0) <br />�N C <br />Ar / '� i <br />sin ill $—c .0=180°--(A-} B) <br />y�{�! ' : . <br />�- 4 r ^/ } ( f t' % o 3 0 ; tt' b, c Area s= 2 ,area = s (s—a s—) r—c) <br />A; b, a Area area = b sin A tj <br />Bin S sin C <br />r-3 =' A. Br C,a Area a[ea = <br />2 sin A <br />73, <br />•I 7� — .03 �. _3r 3' REDUCTION TO HORIZONTAL <br />Horizontal distance= Slope distance multiplied by the - <br />cosine of the ver tical angle. Thus: slope distance =319.4 ft. + <br />iifl tt,, p Q( �J ✓ ` _ yta� Vert. angle=b° 10'. From Table, Page 7X. cos 51 NY= <br />1 yam'e6 �' M. Horizontal distance=319.9X-9959=318.00 fL <br />bugle � Horizontal distance also=Slope distance minus slope <br />. '� ' �e distance times (1—cosine of vertical angle). With the . <br />r..I I crS ,y U# (y. / same figures as in the preceding example, the follow - <br />Horizontal distance rng result is obtained. Cosine 50 10'=.9959.1—.9959=.0041. - <br />ii 319.4X.0041=1.31. 319.4-1.31 =318.09 ft. <br />�- 3� •r , i�- f i f.. O 3l �' . When the -rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 fL, <br />slope distance=3x2.6 St. Horizontal distance=3026— 14 X 14 =3028-0.32= 30228 fL <br />2 X 802.6 <br />L s'MA°t <br />