Laserfiche WebLink
e <br />CURVE TABLES <br />Published by KEUFFEL & ESSER CO. <br />HOW TO USE CURVE TABLES <br />Table I. contains Tangents and Externals to a P curve. Tan. and <br />Ext. to any other radiusmay befound nearly enough, by dividing the Tan. <br />or Ext. opposite the given Central Angle•by the given degree of curve. <br />To find Deg. of Curve, having the Central Angle and Tangent: <br />Divide Tan, apposite the given Central Angle by the given Tangent. <br />To find Deg. of Curve, having the Central Angle and External: <br />LDivide Ext. opposite the given Central Angle by the given External. <br />To find Nat—Tan. and Nat. Ex. Sec. for any angle by Table I.: Tan. <br />or Ext. of twice the given angle divided by the radius of a 1' curve will <br />6e the Nat. Tan. or Nat. Ex. Sec. <br />EXAMPLE <br />1 Wanted a Curve with an Ext. of about 12 ft. Angle <br />of Intersection or 1. P.=23' 20' to the R. at Station <br />542+72.. _ <br />Ext. in Tab. I opposite 23' 20'= 120.87 <br />120.87 =12 —10.07. Say a 10' Curve. <br />Tan. in Tab.] opp. 23' 20'=1183.1 <br />1183.1'=10=118.31.. <br />Correction for A. 23'20' for a 10' Cur. =0.16 <br />118.31+0.16=118.47=corrected Tangent. <br />(1f corrected Ext. is required find in same way) <br />Ang.23'20'=23.33'=10=2.3333=L. C. <br />2' 19 def. for sta. 542 I. P. =sta. 542+72 <br />40 49i' = ' " a +50 Tan. = 1 . 18.47 <br />7' 19j'= a u 543 <br />9' 49j'-- +50 B. C. sta. 541+53.53 <br />53.53 <br />11' 40' _ " 543+ L. C. = 2 .33.33 <br />86.86 E. C.=Sta. 543+86.86 <br />100-53.53=46.47X3'(def. for I ft. of 10' Cur.)=139.41'= <br />2' 192' =def, for sta. 542. <br />v Def, for 50 ft. =2' 30' for a 10' Curve. <br />Def, for 36.86 ft. =1' 50j' for a 10' Curve. <br />' <br />s , <br />i <br />r <br />e <br />CURVE TABLES <br />Published by KEUFFEL & ESSER CO. <br />HOW TO USE CURVE TABLES <br />Table I. contains Tangents and Externals to a P curve. Tan. and <br />Ext. to any other radiusmay befound nearly enough, by dividing the Tan. <br />or Ext. opposite the given Central Angle•by the given degree of curve. <br />To find Deg. of Curve, having the Central Angle and Tangent: <br />Divide Tan, apposite the given Central Angle by the given Tangent. <br />To find Deg. of Curve, having the Central Angle and External: <br />LDivide Ext. opposite the given Central Angle by the given External. <br />To find Nat—Tan. and Nat. Ex. Sec. for any angle by Table I.: Tan. <br />or Ext. of twice the given angle divided by the radius of a 1' curve will <br />6e the Nat. Tan. or Nat. Ex. Sec. <br />EXAMPLE <br />1 Wanted a Curve with an Ext. of about 12 ft. Angle <br />of Intersection or 1. P.=23' 20' to the R. at Station <br />542+72.. _ <br />Ext. in Tab. I opposite 23' 20'= 120.87 <br />120.87 =12 —10.07. Say a 10' Curve. <br />Tan. in Tab.] opp. 23' 20'=1183.1 <br />1183.1'=10=118.31.. <br />Correction for A. 23'20' for a 10' Cur. =0.16 <br />118.31+0.16=118.47=corrected Tangent. <br />(1f corrected Ext. is required find in same way) <br />Ang.23'20'=23.33'=10=2.3333=L. C. <br />2' 19 def. for sta. 542 I. P. =sta. 542+72 <br />40 49i' = ' " a +50 Tan. = 1 . 18.47 <br />7' 19j'= a u 543 <br />9' 49j'-- +50 B. C. sta. 541+53.53 <br />53.53 <br />11' 40' _ " 543+ L. C. = 2 .33.33 <br />86.86 E. C.=Sta. 543+86.86 <br />100-53.53=46.47X3'(def. for I ft. of 10' Cur.)=139.41'= <br />2' 192' =def, for sta. 542. <br />v Def, for 50 ft. =2' 30' for a 10' Curve. <br />Def, for 36.86 ft. =1' 50j' for a 10' Curve. <br />