Laserfiche WebLink
I <br />TRIGONOMETRIC FORMULfE <br />B B B <br />e a <br />- c a c a <br />A b A V C <br />e C �bC A <br />Right Triangle Oblique Triangles <br />1 Solution of Right Triangles <br />For Angle A. sin = a ,cos = b ,tan = a b <br />cot = a ,sec = �, cosec = <br />b. <br />Given Required <br />a,b A, ,c on b=cotB,c= a -}- �=a 1 { R a <br />- _ a <br />a, c A, B, b sin A = = cos B, b c Y 1— a2 <br />V O <br />A, a B, b, c B=90°=A, b= a cotA, c= a <br />sin A. <br />A, b B, a, c B = 90°—A, a = b tan A, c = b <br />' cos A. <br />A, c' :A a, b B =900—A. a = c sin A, b = c cos A, <br />Solution of Oblique Triangles <br />Given Required a sin B <br />A, B, a b, c, C b = , C = 180°—(A + B), c = a sin C <br />sin A sin A <br />b sin Aa sin C <br />A, a, b B, c, C+ 'sin B = a C ='180'—(A +. B) , c = sin A <br />a <br />a, b, C A, B,.0- A+B.180°—C, tan 1,(A—B)= a m + (�- <br />(A +B) . <br />a sin C' <br />sin A <br />a, b, a A, B, C a=a-f-�+e,sin zA= ) a b(a_c , <br />sin 1B=,C=180°---(A+B) <br />v ac <br />a+b+c <br />a, b, a Area S= 2 ,area =s(s—a s— <br />bcsinA <br />A, b, c Area area = <br />2 <br />a"- sin B sin C <br />A, B, C, a Area area = 2 sin A <br />REDUCTION TO HORIZONTAL _ <br />Horizontal distance= Slope distance multiplied by the <br />0 cosine of the vertical angle. Thus: slope distance =3L9.4ft. <br />e alstorc y Vert. angle =50 101. From Table, Page IX, cos b° 10/= ft <br />9959. Horizontal distance=319.4X.9959=818.09 . <br />SX09 rgte Horizontal distance also=Slope distance minus slope+ <br />Ve a distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 5'10'=.0959. 1—.0959=.0041. <br />319.4X.0041=1.31.319.4-1.31=318.09 ft. <br />i When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise =14 ft., <br />slope distance=302.8 ft. Horizontal distance=3026— 14 X 14 =3026-0.32=302.28 ft. <br />2 X 302.6 <br />a <br />• ` W MADE IN V.$,A. <br />U <br />�i <br />1 <br />I <br />TRIGONOMETRIC FORMULfE <br />B B B <br />e a <br />- c a c a <br />A b A V C <br />e C �bC A <br />Right Triangle Oblique Triangles <br />1 Solution of Right Triangles <br />For Angle A. sin = a ,cos = b ,tan = a b <br />cot = a ,sec = �, cosec = <br />b. <br />Given Required <br />a,b A, ,c on b=cotB,c= a -}- �=a 1 { R a <br />- _ a <br />a, c A, B, b sin A = = cos B, b c Y 1— a2 <br />V O <br />A, a B, b, c B=90°=A, b= a cotA, c= a <br />sin A. <br />A, b B, a, c B = 90°—A, a = b tan A, c = b <br />' cos A. <br />A, c' :A a, b B =900—A. a = c sin A, b = c cos A, <br />Solution of Oblique Triangles <br />Given Required a sin B <br />A, B, a b, c, C b = , C = 180°—(A + B), c = a sin C <br />sin A sin A <br />b sin Aa sin C <br />A, a, b B, c, C+ 'sin B = a C ='180'—(A +. B) , c = sin A <br />a <br />a, b, C A, B,.0- A+B.180°—C, tan 1,(A—B)= a m + (�- <br />(A +B) . <br />a sin C' <br />sin A <br />a, b, a A, B, C a=a-f-�+e,sin zA= ) a b(a_c , <br />sin 1B=,C=180°---(A+B) <br />v ac <br />a+b+c <br />a, b, a Area S= 2 ,area =s(s—a s— <br />bcsinA <br />A, b, c Area area = <br />2 <br />a"- sin B sin C <br />A, B, C, a Area area = 2 sin A <br />REDUCTION TO HORIZONTAL _ <br />Horizontal distance= Slope distance multiplied by the <br />0 cosine of the vertical angle. Thus: slope distance =3L9.4ft. <br />e alstorc y Vert. angle =50 101. From Table, Page IX, cos b° 10/= ft <br />9959. Horizontal distance=319.4X.9959=818.09 . <br />SX09 rgte Horizontal distance also=Slope distance minus slope+ <br />Ve a distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 5'10'=.0959. 1—.0959=.0041. <br />319.4X.0041=1.31.319.4-1.31=318.09 ft. <br />i When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise =14 ft., <br />slope distance=302.8 ft. Horizontal distance=3026— 14 X 14 =3026-0.32=302.28 ft. <br />2 X 302.6 <br />a <br />• ` W MADE IN V.$,A. <br />