Laserfiche WebLink
p <br />r <br />17 <br />21 <br />_/42 <br />- - -- <br />I <br />TRICONOMETRIC FORMULA; :. <br />B B B <br />�t <br />i a a c a c <br />a <br />b .� A <br />C <br />L � Rigbt Triangle - Oblique Triangles <br />Solution of Right Triangles <br />b a b c <br />For Angle Aa, sin — � ,cos= —,tan= T ,cat = a ,sec = �c, cosec = -- <br />Given Required a <br />a,b A,B,c tanA==cotB,c= u� }b =rz li a2 <br />.I a,e A,B,& sinA=c=Cos B,b+a)(e—a)=a�1—os <br />I' -- <br />A, a <br />A, <br />B, b, c <br />B=90°—A, b= a cotA, c= a <br />Area <br />s— 2 , area = s(v <br />sin A. <br />A, b <br />B, a, c <br />B=90°--A,a = btanA,o= b b, <br />bcsinA D <br />area = <br />/ <br />C6S A. <br />A, a <br />B, a, b <br />B = 90°—A, a = c sin A, b = c cos A, <br />� <br />Solution <br />of Oblique Triangles <br />Given <br />B' a <br />Required <br />b, c' C <br />_ a sin B a sin C <br />b <br />' C = 180°—(A f B), c = <br />sin A sin A <br />A, a, b <br />B, c, C <br />b sin A a sin C <br />sin B = <br />,C = 180°---{A + B), c =t. <br />Horizontal distance= Slope distance multiplied by the <br />cosine of the verticalanale.Tbus: slope distance =3o9.4fL <br />1 ,:• e <br />+-we. ? �A <br />awe., <br />a sin A, <br />a, b, C <br />A, B, c <br />A+B=180°— C, tan a (A—B)= (a—b) tan �, (A+B) <br />¢+b <br />a sin 0 <br />slit ft <br />a, b, a <br />A, B, C <br />s— ,sin aA--\I , <br />2 b o <br />k a 8—i <br />sin'B—.���` ��c i,C-1$0°�A-}•B) <br />A. distance times (l.—cosmn of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained- Cosine 5°10'=.9959.1—.99:19=.0041. <br />319.4X.0041=1.31. 319.4-1.31=$18.09 ft. r. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=l4 ft., <br />slope dis#anee=302.6 ft. Horizontal distance=30214X14= <br />6— =302.6-0.M=30128 ft. <br />3 X 302.6 + . <br />' '' 61A6E IN Ef. B. A. ,i.•i <br />a, b, c <br />Area <br />s— 2 , area = s(v <br />f <br />A, b, e <br />Area <br />bcsinA D <br />area = <br />/ <br />2 <br />� <br />A., B, C, a <br />Area <br />' ¢'- sin B sin C <br />area — 2 sin d <br />___-_ -------_---.._.._.�.,�,�.•,_;:�I" <br />RRDUCTION TO HORIZONTAL <br />` <br />�6 <br />Horizontal distance= Slope distance multiplied by the <br />cosine of the verticalanale.Tbus: slope distance =3o9.4fL <br />1 ,:• e <br />+-we. ? �A <br />awe., <br />SE�p <br />� 5104 ��g�e <br />Vert. angle =51 19. From Table, Page IX. cos 5'1(Y= <br />9959. Horizontal distance=319.4X.9959=318.09 ft. <br />� Horizontal distance also=Slope distance minus slope <br />A. distance times (l.—cosmn of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained- Cosine 5°10'=.9959.1—.99:19=.0041. <br />319.4X.0041=1.31. 319.4-1.31=$18.09 ft. r. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=l4 ft., <br />slope dis#anee=302.6 ft. Horizontal distance=30214X14= <br />6— =302.6-0.M=30128 ft. <br />3 X 302.6 + . <br />' '' 61A6E IN Ef. B. A. ,i.•i <br />