Laserfiche WebLink
TABLE II. •- Radii, Ordinates and Deflections. Chord =100 ft. <br />Deg. <br />Radius <br />Hid. <br />Ord. <br />Tan. <br />Die:. <br />Def. <br />,Dist. <br />Def' <br />for <br />1 F6 <br />Deg. <br />Radius <br />bl d. <br />Ord. <br />Ten <br />Dist, <br />Def. <br />Dist. <br />Def. <br />fcr <br />1 I't. <br />2° 171 <br />t, <br />ft. <br />ft. <br />ft. <br />181.39 <br />1° 59" <br />tt, <br />it. <br />- 1t. <br />ft. <br />340 <br />0°10 <br />34377. <br />.036 <br />.145 <br />.291 <br />0.05 <br />7° <br />819.0 <br />1.528 <br />6.10512.21 <br />3°'33' <br />2.10 <br />20 <br />17189. <br />.073 <br />.291 <br />,582 <br />0,10 <br />2D'' <br />781.8 <br />1.600 <br />6.395 <br />12.79 <br />2.20 <br />30 <br />11459. <br />.109 <br />.436' <br />.873 <br />0.15 <br />30 <br />764.5 <br />1.637 <br />0.540 <br />13.08 <br />2.25 <br />40 <br />8594.4 <br />.145 <br />.582 <br />'1.164 <br />0.20 <br />40 <br />747.9 <br />1.673 <br />0.685 <br />13.37 <br />2.30 <br />50 <br />6875.5 <br />.182 <br />.727. <br />1:454 <br />0.25, <br />8 ' <br />716.8 <br />1.746 <br />6.976 <br />13.95 <br />2.40 <br />1•'. <br />6729.6 <br />.218 <br />.873 <br />1.745 <br />0.30 <br />`20 <br />(388.2 <br />1.819 <br />7.266 <br />14.53 <br />2.50 <br />10 <br />4911.2 <br />.255'1.018 <br />103.84 <br />2.036 <br />0.35 <br />.30 <br />674.7 <br />1.855 <br />7.411 <br />14.82 <br />2.55 <br />20 <br />4297,3 <br />.291 <br />1.164 <br />2:327 <br />0.40 <br />40 <br />661.7 <br />1.892 <br />7.556 <br />15.11'2.60 <br />7° 1 V <br />"30 <br />3819.8 <br />.327 <br />1.309 <br />2.618 <br />0.45 <br />9 <br />G37.3 <br />1.965 <br />7.846 <br />15.69 <br />2.70 <br />.40'•.'3437.9 <br />.364 <br />1.454 <br />2.909 <br />0.50 <br />20 <br />G14.6 <br />2:037 <br />8.136 <br />16.27 <br />2.80 <br />'50' <br />3125.4 <br />.400 <br />1.600 <br />3.200 <br />0.55 <br />. 30 <br />603.8 <br />2.074 <br />8.281 <br />16.56 <br />2.85 <br />3 <br />2864:9 <br />.436 <br />1.745 <br />3.490 <br />0.60 <br />40 <br />593.4 <br />2.110 <br />8:426 <br />16.85 <br />2.90 <br />10. <br />2644.6 <br />.473 <br />1.891 <br />3.791 <br />0.65 <br />10 <br />573.7 <br />2.183 <br />8.716 <br />17.43 <br />3.00 <br />20 <br />2455.7 <br />'.509 <br />2.036 <br />4.072 <br />0.70 <br />30 <br />546.4 <br />2.292 <br />9.150 <br />18.30 <br />3.15 <br />30 <br />2292.0 <br />.545 <br />2.181 <br />4.363 <br />0.75 <br />11 <br />521.7 <br />2.402 <br />9.585 <br />19.10 <br />3.30 <br />40 <br />'2148.8 <br />.582 <br />2.327, <br />4.654 <br />0.80 <br />30 <br />499.1 <br />2.511 <br />10.02 <br />20,04 <br />3.45 <br />50 <br />2022.4 <br />.619 <br />2.472'.4.945 <br />0.85 <br />12 <br />478.3 <br />2.620 <br />10.45 <br />20.91 <br />3.60 <br />1910.1 <br />.G55 <br />2.618: <br />'5.235 <br />0.90 <br />­ 30 <br />459.3 <br />2.730 <br />10.89 <br />21.77 <br />3.75 <br />10 <br />1809.6 <br />.691 <br />2.763 <br />5.526 <br />0.95 <br />13 <br />441.7 <br />2.839 <br />11.32 <br />22.04 <br />3.90 <br />20 <br />1719.1 <br />.727 <br />2.908 <br />5.817 <br />1.00 <br />30 <br />425.4 <br />2.949 <br />11.75 <br />23.51 <br />4.05 <br />30 <br />1637.3 <br />.764 <br />3.054 <br />6.103 <br />1.05 <br />14 <br />410.3 <br />3.058 <br />12.18 <br />24,37 <br />4.20 <br />40. <br />1562.9 <br />:800 <br />3.199 <br />6.398 <br />1.10 <br />30 <br />396.2 <br />3.168 <br />12.62 <br />25.24 <br />4.35 <br />50 <br />.1495.0 <br />:830 <br />3.34.5 <br />6.689 <br />1.15 <br />383.1 <br />3,277 <br />13.055 <br />20.11 <br />4.50 <br />?- <br />1432.7 <br />.873 <br />3.490. <br />6,980 <br />1.20 <br />,15 <br />30 <br />370.8 <br />3.387 <br />13.49 <br />26:97 <br />4.G5 <br />10.'1375.4 <br />.909 <br />3.635 <br />7:271 <br />1.25 <br />16 <br />359.3 <br />3.496 <br />13.92 <br />27.84 <br />4.80 <br />20 <br />1322.5 <br />.945 <br />3.718 <br />7.561 <br />1.30 <br />30 <br />348.5 <br />3.606 <br />14.35 <br />28.70 <br />4.95 <br />30 <br />1273.6 <br />.982 <br />3.925 <br />7.852'1.35 <br />17 <br />338.3 <br />3.716 <br />14.78 <br />29,56 <br />5.10 <br />40 <br />1228.1 <br />1.0184.071 <br />S. 143 <br />1.40 <br />18 <br />319.6 <br />3.935 <br />15.64 <br />31.29 <br />5.40 <br />50 <br />1185.81.055 <br />4.217 <br />8.433 <br />1.45 <br />19 <br />302.9 <br />4,155 <br />16.51 <br />33.01 <br />5.70 <br />8 ` <br />1146.3 <br />1.091 <br />4.362 <br />8.724 <br />.1.50 <br />20 <br />237.9 <br />4.374 <br />17.37 <br />34.73 <br />6.00 <br />10 <br />1109.3 <br />1.127 <br />4.507 <br />9.014 <br />1.55 <br />21 <br />274.4 <br />4.594'18.22 <br />36.44 <br />GM <br />20' <br />1074.7 <br />1.164 <br />4.653 <br />9.305 <br />1.60 <br />22 <br />262.0 <br />4:.814 <br />19.08 <br />38.1G <br />6.60 <br />30 <br />1042.1 <br />'1.011.5 <br />1.200 <br />4.793 <br />9.596 <br />1.65 <br />23 <br />250.8 <br />5.035 <br />19.94 <br />39.87 <br />6.90 <br />40 <br />1.237 <br />4.943 <br />9.886 <br />1.70 <br />24 <br />240.5 <br />5.255 <br />20.79 <br />41.58 <br />7.20 <br />50 <br />982.6 <br />1]273 <br />5.088 <br />10.18 <br />1.75 <br />;25 <br />231.6 <br />5.476 <br />21.64 <br />43.28 <br />7.50 <br />6 <br />955.4 <br />1.309 <br />5.234 <br />10.47 <br />1.80 <br />26 <br />222.3 <br />5.097 <br />22.50 <br />44.9'3 <br />7.S0 <br />10 <br />929.6 <br />1:846 <br />5.379 <br />10:76 <br />1.85 <br />27 <br />214.2 <br />5.918:23.8.5 <br />46.69 <br />S.10 <br />20 <br />905.1 <br />1.382 <br />5.524 <br />11,05 <br />1.90 <br />28 <br />206.7 <br />6.139 <br />24.19 <br />48.38 <br />8.40 <br />30 <br />881.9 <br />1,418 <br />5.669 <br />11.34 <br />1.95 <br />29 <br />199.7 <br />6.360 <br />25.04 <br />50.07 <br />8.70 <br />40 <br />859.9 <br />1.455 <br />5.514 <br />11.63 <br />2.00 <br />30 <br />193.2 <br />6.583 <br />25.88 <br />51.76 <br />9.00 <br />'1'he middle ordinate in inches for any cord of length (C) is equal to .0012 C= <br />mnitinlito by the middle ordinate from the above table. Thue,if it <br />deeired to bend a 30 ft, rail to fit a 10 degree curve, ite middlo ordinate should <br />be .0012X900X2.183 or 2.36 inches. • <br />TABLE III, Deflections for Sub Chords for Short Radius Curves. <br />Degree <br />of <br />Curve <br />Radius <br />50 <br />�J sub chard. <br />R' = sin of , def. angle <br />of arc <br />for 100 ft. <br />sins def. ang. <br />12.5 Ft. <br />15 Ft. <br />20 Ft. <br />25 Ft. <br />30° <br />193.18 <br />1° 51' <br />2° 171 <br />2° 58' <br />3°.43' <br />IoI. 15 <br />32° <br />181.39 <br />1° 59" <br />2°25' <br />3° 10' <br />3°58' <br />lot -33 <br />340 <br />171.01 <br />2°06' <br />2° 33' <br />3°21' <br />4° 12' <br />101.48 <br />36° <br />161.80. <br />2° 13' <br />2° 41' <br />3°'33' <br />4° 26' <br />Io1.66 <br />3$° <br />r53 .58 <br />2° :iY <br />2°-49'.3-,44, <br />.4000 <br />4° 40' <br />i,oI.85 <br />40_ <br />146:19 <br />2° 27' <br />2° 57`. <br />-3"551 <br />4° 54'. <br />Io2:o6 <br />4? <br />139 52 <br />?° 34'" <br />3° 05' <br />4° 07` <br />5° 08' <br />102.29 <br />44 <br />133:47.' <br />2° 41' <br />3° 13' <br />4° i8' <br />5° 22' <br />102.53 <br />46° <br />127.97 <br />2° 481 <br />30 210 <br />4° �9' <br />50.36' <br />io2.._76 <br />48° <br />:122:922' <br />55' <br />3' 29'.- <br />4° 40. <br />5° 5O' <br />103.00 <br />50° <br />•-118.31- <br />3° 02' <br />3° 38' <br />4° 51' <br />6° 04' <br />103._24 <br />520. <br />114.'06 <br />30 09" <br />3° 46' <br />5° oz' <br />6° 17' ' <br />103 :54 <br />54° <br />.. 110.11 <br />3° 36` <br />3° 54' <br />-1500 <br />6° 31' <br />103.84 <br />56° <br />106.50 <br />3° 22' <br />4° 02 <br />50 23' <br />6° 44' <br />10:1.14 <br />58° <br />103- 14 <br />3° 2g' <br />' 4° 10' <br />5° 34` <br />60 57' <br />1043 <br />6o° <br />100.00 <br />3° 35' <br />4° 18' <br />5° 44' <br />7° 1 V <br />104.72 <br />CURVE FORMULAS - - IX <br />1 li tan t 1 IL = T cot. i I chordQ <br />I . = 5o tan s I 2 Chord def. = 50' R <br />50 Sin. JD 1Io. chords = I <br />RI E= R ex. sec i I D <br />Sin. 1 1) - tan T i • = T tan I : Tan. def. _ chord def. <br />The square of any distance, divided by twice the•radius, will equal <br />the distance from tangent to curve, very nearly. <br />To find angle for a given distance and deflection. <br />Rule f. Multiply the given distance by ,01745 (def. for r° for I ft. <br />see"fable II.), and divide given deflection by the product. <br />Rule z. Multiply given deflection by 57.3, and divide the product by <br />the given distance. <br />To find deflection for a given angle and distance. Multiply the angle <br />by .oi 745, and the product by the distance. <br />GENERAL DATA. <br />R1GaT ANGLE TRIANGLES. Square the altitude, divide by twice the <br />base. Add quotient to base for hypotenuse. <br />Givcu Base foo, Aft. Yo.IO2=2oo=.5. Ioo-1-.5=Io0.5 hyp. <br />Given.l-lyp. Ioo,Alt. 25.25$=zoo-3.125. t00-3.125=96.875=13ase. <br />Error in first example, .oc,2; in last, .o45• <br />To find'Tons of Raid in one mile.of trach: multiply weight per yard <br />by I I, and divide by 7. <br />LEVELING. The correction for curvature and refraction, in feet <br />and decimals of feet.is equal to 0.574d3, where d is the distance in ',miles. <br />The correction for curvature alone is'closely, Jd2. - The combined cor- <br />rection is negative. <br />PROBABLE ERROR. If d„ a, da etc. are the discrepancies of various <br />results from the mean, and if Id'=the sum of the squares of these differ- <br />ences and n=the number'of observations, then the probable error of the <br />E <br />mean + 0.6745 id <br />n <br />SOLAR <br />EPHEMERIS. Attention is Called to the Solar Ephemeris for' <br />the current year, published by lseuffel & Esser Co., and furnished free of <br />charge upon request, which is 3}x5J in., with about 90 pages of data very <br />useful to the Surveyor; such as the adjustments of transits, levels and <br />solar attachments; directions and -tables for determining the meridian <br />and the latitude from observations on the sun and Polaris; stadia meas- <br />urements; magnetic declination' arithmetic constants; English and Metric <br />conversions; trigonometric f orinulas; Natural and Logarithmic Functions; <br />and Logarithms of Numbers. <br />TABLE IV. -Minutes in Decimals of a Deuree, <br />1'.0167 <br />11' <br />.1833 <br />21' <br />.3500 <br />31' <br />.5167 <br />41' <br />6833 <br />51' <br />.5500 <br />2.. <br />.0333 <br />i2.2000 <br />22 <br />.3667 <br />32 <br />.5333 <br />42 <br />.7000 <br />52 <br />SG67 <br />3 <br />:0500 <br />13 <br />.2167 <br />23 <br />.3933 <br />33 <br />.5500 <br />'43 <br />.7167 <br />53 <br />.5333 <br />4; <br />.0667 <br />14 <br />.2333 <br />24 <br />.4000 <br />34 <br />.5067 <br />44 <br />.7333 <br />54 <br />.9000 <br />5 <br />.0833 <br />15 <br />.2500 <br />25 <br />.4167 <br />35 <br />.5333. <br />45 <br />.7500 <br />55 <br />.9167 <br />6 <br />.1000 <br />16 <br />.2G67 <br />26 <br />.4333 <br />36 <br />.6000 <br />46 <br />.7667 <br />66 <br />.9333 <br />7 <br />:.1167 <br />17 <br />.2833 <br />27 <br />.4500 <br />37 <br />•.6167 <br />47 <br />.7533 <br />'57 <br />'.9500 <br />8 <br />.1333 <br />IS <br />.3000 <br />28 <br />.4G67 <br />36 <br />-.0333. <br />48 <br />-.°000 <br />5S <br />-.9667 <br />9, <br />-1500 <br />10 <br />.3167 <br />29 <br />.4833 <br />39 <br />59 <br />.9S33. <br />10 <br />1607 <br />20•.2333 <br />30 <br />.5000 <br />40' <br />.6500 <br />.6667 <br />_49 <br />50 <br />.8167 <br />.8333 <br />60 <br />11.0000 <br />- <br />TABLE V. - <br />Inches in Decimals of -a Foot. <br />1-16 <br />332 <br />Y8 <br />3-10 <br />% <br />5-16 <br />j <br />y He <br />Y <br />0052 <br />.0079 <br />.0104 <br />.0156 <br />.0208 <br />.0260 <br />.0313 <br />.0417 .0521 <br />.0625 <br />.0729 <br />1 <br />2 <br />3 <br />4 <br />b <br />6 <br />7 <br />8 9 <br />10 <br />11 <br />.0833 <br />.1667 <br />,2500 <br />.3333 <br />.4167 <br />.5000 <br />.5833 <br />1 .6667 .7500 <br />.8333 <br />.9167 <br />