Laserfiche WebLink
VIII <br />TABLE II. - Radii, Ordinates and Deflections. Chord =100 ft. <br />Deg. <br />I P•uiius <br />I Mid. <br />Ord.: <br />Tan. <br />Dd. <br />Dist. <br />for <br />1 rt. <br />Deg. <br />Radius <br />1lid. <br />Ord. <br />Tan, <br />Dist. <br />Def. <br />Dist. <br />for <br />Dist. <br />1 Ft <br />2° 17, <br />ft. <br />ft. <br />ft. <br />IL <br />.3667 <br />10591 <br />ft. <br />it. <br />ft. <br />ft. <br />34' <br />0".10, <br />34377. <br />.036 <br />.145 <br />.291 <br />0.05 <br />7° - <br />819.0 <br />1.528 <br />6.105 <br />12.21 <br />2.10 <br />20 <br />17189. <br />.073 <br />.291 <br />.552 <br />0.10 <br />20' <br />781.S <br />1.600' <br />6.395 <br />12.79 <br />2.20 <br />30 <br />11459. <br />.109 <br />.436 <br />.873 <br />0.15 <br />30 <br />764.5 <br />1.637 <br />6.540 <br />13.08 <br />2.25 <br />40 <br />8594.4 <br />.145 <br />..582 <br />1.164 <br />0.20 <br />40 <br />747.9 <br />1.67,^, <br />6.685 <br />13.37 <br />2.30 <br />50 <br />6875.5 <br />.182 <br />.727 <br />1.454 <br />0.25 <br />S <br />716.8 <br />1.746 <br />6.976 <br />13.95 <br />2.40 <br />1 <br />5729.G <br />.218 <br />.S73 <br />1.745 <br />0.30 <br />20 <br />688.2 <br />1.819 <br />7.2GG <br />14.53 <br />2.50 <br />10 <br />4911.2 <br />.255 <br />1.01S <br />2.036 <br />0.35 <br />30 <br />674.7 <br />1.855 <br />7.411 <br />14.82 <br />2..55 <br />20 <br />4297.3 <br />.291 <br />1.164 <br />2.327 <br />0.40 <br />40 <br />661.7 <br />1.892 <br />7.550 <br />15.11 <br />'2.60 <br />30 <br />3819.8 <br />.327 <br />1.309 <br />2.618 <br />0.45 <br />9 <br />637.3 <br />1.665 <br />7.846 <br />15.69,2.70 <br />40 <br />3437.9 <br />.361 <br />1.454 <br />2.909 <br />0.50 <br />20 <br />G14.6 <br />2.037 <br />8.130 <br />16.27 <br />2.80 <br />50 <br />312.5.4 <br />.400 <br />1.600 <br />3:200 <br />0.55 <br />603.8 <br />2.074 <br />.8.281 <br />16.56 <br />2.85 <br />2 <br />28G4.9 <br />.430 <br />1.745 <br />3.490 <br />0.60 <br />,30 <br />40 <br />;93.4 <br />2.110 <br />8.426 <br />16.85.2.90 <br />10 <br />264.1.6 <br />.473 <br />1.561 <br />3.751 <br />0.65 <br />10 <br />573.7 <br />2.183 <br />8.716 <br />17.43 <br />3.00 <br />20 <br />2155.7 <br />,509 <br />2.036 <br />4.072 <br />0.70 <br />30 <br />54G.4 <br />2.292 <br />9.150 <br />18.30 <br />3.15 <br />30 <br />2292.0 <br />.545 <br />2.181 <br />4.363 <br />0.75 <br />it <br />521.7 <br />2.402 <br />0.585 <br />19.10 <br />3.30 <br />40 <br />2149.8 <br />.582 <br />2.327 <br />4.654 <br />0.80 <br />30 <br />499.1 <br />2.511 <br />10.02 <br />20.04 <br />3.45 <br />50 <br />2022.4 <br />.618 <br />2.472 <br />4.945 <br />0.85 <br />12 <br />478.3 <br />2.620 <br />10.45 <br />20.91 <br />3.60 <br />3 <br />1910.1 <br />.655 <br />2.613 <br />5.235 <br />0.90 <br />30 <br />459.3 <br />2.730 <br />10.89 <br />21,77 <br />3.75 <br />10 <br />1500.6 <br />.691 <br />2.763 <br />5.526 <br />0.95 <br />13- <br />441.7 <br />2.839 <br />11.32 <br />22,64 <br />3.90 <br />20 <br />1719.1 <br />.727 <br />2.908 <br />5.817 <br />1.00 <br />30 <br />425.4 <br />2.949 <br />11.75 <br />23.51 <br />4.05 <br />30 <br />1637.3 <br />.764 <br />3.054 <br />6.108 <br />1.05 <br />14 <br />410.3 <br />3.058 <br />12.18 <br />24,37 <br />4:20 <br />40 <br />1562.9 <br />.800 <br />3.199 <br />6.393 <br />1.10 <br />30 <br />396.2 <br />3.168 <br />12.62 <br />25,24 <br />4.35 <br />50 <br />1495.0 <br />.836 <br />3.345 <br />6.689 <br />1.15 <br />15 <br />383.1 <br />3.277 <br />13.05 <br />26.11 <br />4.50 <br />4 <br />1432.7. <br />.873 <br />3.490 <br />6.990 <br />1.20 <br />30 <br />370.8 <br />3.387 <br />13.49 <br />26:97 <br />4.65 <br />10 <br />1375.4 <br />.909 <br />3.035 <br />7.271 <br />1.25 <br />16 <br />359.3 <br />3.400 <br />13.92 <br />27.84 <br />4.80 <br />20 <br />1322.5 <br />.945 <br />3.718 <br />7.561 <br />1.30 <br />30 <br />318.5 <br />3.606 <br />14.35 <br />28.70 <br />4.95 <br />30 <br />1273.6 <br />.982 <br />3.926 <br />7.852 <br />1.36 <br />17 <br />338.3 <br />3.716 <br />14.78 <br />29.56 <br />5.10 <br />40 <br />1228.1 <br />1.018 <br />4.071 <br />8.143 <br />1.40 <br />18 <br />319.6 <br />3.935 <br />15.64 <br />31.29 <br />5.40 <br />50 <br />11S5.8 <br />1.055 <br />4.217 <br />8.433 <br />1.45 <br />19 <br />302.9 <br />4.155 <br />16:51 <br />33.01 <br />5.70 <br />5 <br />1146.3 <br />1.091 <br />4.362 <br />8.724 <br />1.50 <br />20 <br />287.9 <br />4.374 <br />17.37 <br />34.73 <br />0.00 <br />10 <br />1109.3 <br />1.127 <br />4.507 <br />0.014 <br />1.55 <br />21 <br />274.4 <br />4.594 <br />18.22 <br />30.44 <br />6.30 <br />20 <br />.1074.7 <br />1.164 <br />4.653 <br />9.305 <br />1.60 <br />22 <br />262.0 <br />4:814 <br />19.08 <br />38: 16 <br />6.60 <br />30 <br />1042.1 <br />1.200 <br />4.799 <br />9.596 <br />1.65 <br />23 <br />250.8 <br />5.035 <br />19.94 <br />39.87 <br />6.90 <br />40 <br />1011.5 <br />1.237 <br />4.943 <br />9.886 <br />1.70 <br />24 <br />240.5 <br />5:255 <br />20.79 <br />41,55 <br />7.20 <br />50 <br />932.6 <br />1.273 <br />5.088 <br />10.18 <br />1.7.5 <br />25 <br />231.0 <br />5.476 <br />21.64 <br />43.23 <br />7.50 <br />6 <br />955.4 <br />1.309 <br />5.234 <br />10.47 <br />1.80 <br />26 <br />222.3 <br />5.607 <br />22:50 <br />44.99 <br />7.80 <br />110 <br />929.6 <br />1.340 <br />5.379 <br />10.76 <br />1.85 <br />27 <br />214.2 <br />5.918 <br />23.35 <br />46.69 <br />8.10 <br />20 <br />905.1 <br />1.382 <br />5.524 <br />11.05 <br />1.90 <br />28 <br />206.7 <br />6.139 <br />24.10 <br />48.38 <br />8.40 <br />30 <br />881.9 <br />1.418 <br />5.669 <br />11.34 <br />1.95 <br />29 <br />199.7 <br />6.360 <br />25.04 <br />50:07 <br />8.70 <br />40 <br />559.9 <br />1.455 <br />5.814 <br />11.63 <br />2.00 <br />30 <br />193.2 <br />6.583 <br />25.83 <br />51:76 <br />9.00 <br />The middle ordinate in inches for any cord of length (C) is equal to .0012 C' <br />multiplied by the muddle ordinate taken frmn the above table. Thus, if it <br />desired to bend y 30 ft. rail to fit a 10 degree curve, its middle ordinate should <br />be .0012X90OX2.183 or 2.36 inches. <br />TABLE III. Deflections for Sub Chords for Short Radius Curves. <br />Degree <br />of <br />Curve <br />Radius <br />80 <br />3z sub chordLength <br />- R =sin of z, def. angle <br />of arc <br />for 100 ft. <br />sin, $ def. mg. <br />12.5 Ft. <br />15 Ft'. <br />20 Ft. <br />25 Ft. <br />30° <br />193-18 <br />1' 511 <br />2° 17, <br />,° 581. <br />3° 43' <br />I01.15 <br />320.181.39 <br />.3667 <br />10591 <br />2° 25 <br />3° 10' <br />3° 58' <br />101.33 <br />34' <br />171.01 <br />2°o6' <br />2° 33' <br />3°2I' <br />4°12' <br />101.45 <br />36' <br />161.8o <br />2°13' <br />2°41 <br />3°33' <br />4° 26' <br />ioi.66 <br />3$° <br />I'a3.58 <br />2° 20' <br />2° 411' <br />30 44' <br />4° 40' <br />101::85 . <br />40° <br />146.19 <br />2027' <br />2° 57' <br />3° 551 <br />. <br />4°54' <br />102.o6 <br />42 <br />139.52 <br />2° 34 <br />3° o5' <br />4° 07' <br />S° 08 <br />IO2.29 <br />440 <br />133-47 <br />2° 41' <br />30 13' <br />40 18' <br />5° 22 • <br />102.53 <br />46' <br />127.97 <br />2° 48 <br />3°21' <br />4°29' <br />5°36' <br />102.76 <br />48° <br />122.92 <br />2°55t <br />3'29 <br />4°40' <br />5°50' <br />103.00 <br />So° <br />118.31 <br />3 02' <br />30 38' <br />4° 51'. <br />6° 04 <br />103.24 <br />52° <br />114.06, <br />3°09' <br />3°46' <br />5°oa' <br />6°17' <br />103.54 <br />54° <br />110.11 <br />3° 16' <br />3° 54' <br />1' 13' <br />6-31, <br />103.84 <br />56° <br />1o6.5o <br />3°22' <br />4°02' <br />5°23' <br />6°44' <br />104.14 <br />58° <br />103.14 <br />3° 29' <br />4° 10' <br />5° 341 <br />69,57' <br />104.43 <br />6o° <br />Ioo. oo <br />3° 35' <br />4' 18' <br />1 5° 44' <br />79 11' <br />104.72 <br />IX <br />CURVE. FORMULAS <br />T= R tan U1 I R= T co. r, I. Chchord2 <br />,r _ So tan ,L I t-ord def. = H <br />Sin. ll ' R 50 <br />= <br />50 Sin. a D I <br />Sin. � D ='R:.. , No. chords= - <br />E=Rex. see 4I D <br />Sin. } D = 5° tT I E = T tan J.1 Tan. def. = a chord def. <br />The square of any distance, divided by twice,the radius, will equal <br />the distance from tangent to curve, very nearly. <br />To find angle for a given distance and deflection. <br />Rule I. Multiply the given distance by .01745 (def. for i° for i ft. _ <br />.see Table II.), and divide given deflection by the product. <br />Rule 2. Multiply given deflection by 57.3, and divide the product by <br />the given distance. <br />To find deflection for a given angle and distance. Multiply the angle <br />by .01745, and the product by the distance. <br />GENERAL DATA <br />RIGHT ANGLE TRIANGLES. Square the altitude, divide by twice the <br />base. Add quotient to base for hypotenuse. <br />Given Base loo, Alt. 10.102=200=.5. zoo+.5=1oo.5 hyp. <br />Given Hyp, loo, Alt. 25.252_200=3.125. 100-3.125=96.875=13ase. <br />Error in first example, .002;. in last, .045. <br />To find Tons of Rail in one mile of track: multiply weight per yard <br />by 11, and divide by 7. <br />LEVELING. The correction for curvature and refraction, in feet <br />and decimals of feet is equal to 0.574d', where d is the distance in miles. <br />The "correction for curvature alone is closely, 3d'. The combined cor- <br />rection is negative. <br />PROBABLE ERROR. If dl, d„ d3', etc. are the discrepancies of various <br />results from the mean, and if Y-d'=the sum of the squares of these differ- <br />ences and n=the number of observations, then the probable error of the <br />mean 0.6745 2.dx' <br />x,11 (n-1) <br />SOLAR EPHEBIERis. Attention is called to the Solar Ephemeris for <br />the current year, published by Keuffel & Esser Co., and furnished free of <br />charge upon request, which is 3;;x5 in., with about 9.0 pages of data very <br />useful to the Surveyor; such as the adjustments of transits; levels and <br />solar attachments; directions and tables for determining the meridian . <br />and .the latitude from observations on the sun and Polaris; stadia meas- <br />urements; magnetic declination; arithmetic constants; English and Metric <br />conversions; trigonometric formulas; Natural andLogarithmic Functions; <br />and Logarithms of Numbers. <br />TABLE IV. - Minutes in Decimals of a Deuce. <br />1' <br />.0167 <br />-11' <br />.1833 <br />21' <br />.3500 <br />31' <br />.5167 <br />41' <br />6833 <br />51' <br />.8500 <br />2 <br />.0333 <br />12 <br />,2000 <br />22 <br />.3667 <br />32 <br />.5333 <br />42 <br />.7000 <br />52 <br />.8667 <br />3 <br />.0500 <br />13 <br />.2167 <br />23 <br />.3833 <br />33 <br />.5500 <br />43 <br />7167 <br />53 <br />.8833 <br />4 <br />.0667 <br />14 <br />.2333 <br />24 <br />.4000 <br />34 <br />.5667 <br />44 <br />,7333 <br />54 <br />.0000 <br />5 <br />OS33 <br />15 <br />.2500 <br />25 <br />.4167 <br />35 <br />5333 <br />45 <br />.7500 <br />55 <br />.9167 <br />6 <br />.1000 <br />16 <br />.2667 <br />2G <br />.4333 <br />36 <br />.6000 <br />46 <br />.7667 <br />66 <br />.9333 <br />7 <br />.1167 <br />17 <br />.2333 <br />27 <br />.4500 <br />37 <br />.6167 <br />47 <br />.7833 <br />57 <br />.9500 <br />8 <br />.1333 <br />13 <br />.3000 <br />28 <br />.4607 <br />33 <br />.6333 <br />48 <br />.5000 <br />5S <br />.9667 <br />9 <br />.1500 <br />19 <br />.3167 <br />29 <br />.4533 <br />39 <br />.6500 <br />49 <br />.8167 <br />59 <br />.9333 <br />10 <br />.1667 11 <br />20 <br />.3333 Ij <br />33 <br />.5000 <br />40 <br />.6661 <br />50 <br />.8333 <br />60 <br />1.0000 <br />TABLE V. - <br />Inches in Decimals of a foot, <br />1. 1W <br />3-32 <br />11 <br />3-16 <br />Y., <br />5 -IG % <br />0052 <br />.0078 <br />.0101 <br />.0156 <br />.0203 <br />.0260 .0313 <br />..n417 .0sz1 <br />0625 <br />_.°729 <br />1 <br />2 <br />3 <br />4 <br />5 <br />G i <br />8 9 <br />10 <br />11 <br />1 <br />.0833 <br />.1667 <br />.2500 <br />.3333 <br />.41617 f <br />.5000 .58.33 <br />.6667 .7500 <br />.6333 <br />.9167 <br />