Laserfiche WebLink
TRIGONOMETRIC FORMIJL}E <br />IIB 71 • B <br />.,'i C • a U . CL � 'LE' <br />1 ` <br />A b CAA <br />Right Triangle Oblique Triangles <br />Solution .of Right. Triangles <br />�__ 3 a For Angle A. sin ao> , cos � , tan= h , cot' b = a see h, cosec = a <br />Given Required - , , <br />B ,c " tan A = = cot B, c = a2 +7 = a 1 +2 <br />{ a, a A, B, a sin A = d =cos B, b = %/—(c +a) (e—a} <br />G v 02 <br />A, a B, b, c B = 90°—A, b = a cotA, o = sin A. <br />•A, a B, a, c B =90°—A, a a tan A, e,= a <br />cos A. <br />A,oB, a, b B=90°—A,a=esin A,b=e.cosA, <br />Solution of !Oblique, Triangles <br />Given Required a sin B°— d sin C <br />C b sin A , C = '180 (A + B}, c. = sin.A <br />b'sin Aa sin C <br />A,a,a B, 0,C sin B=. a ,C=180'�A+B)�c—•sin A <br />a, b, C' A, B;"c A+B=180°— C, tan (A—)?)= (q—b) tan ? {A+B) <br />a + a <br />a sin C <br />sin A <br />J a+b+e jl5— <br />a, b, c A, B, Cs 2 sin _A— <br />0 a <br />sin,' a o , C=180°—(A+B) <br />a+b+d <br />a, b, c Area - 2 <br />A, b, c Areaarea b 0 sin A <br />= 2 <br />4, a' sin B sin C " <br />A, B, C, a Area area = 2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance= Slope distance multiplied.by the <br />cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />9at'ce Vert. angle=5010'. From Table, Page IX. cos 5'101= <br />e a� 9939. Horizontal distance=319.•1X,9959=315.09 ft. <br />�loQ n1e Horizontal distance also=Slone distance minus slope <br />yect. R distance times (1 --cosine of vertical angle). PJith the <br />same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Gusine 5° I0I=.9955.1—.9969=.0041. <br />319"4X,0041=1.31.319.4-1.31=313.09 rt. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise =llft., <br />slope di5tance=302.6 ft. Horizontal distance=302.6— 14 X 14 =232.6-0.32=902.28 ft. <br />2 X 302.6 <br />