Laserfiche WebLink
l � TRIGONOMETRW FORMULA]- <br />p,�t'l `1-�-. � �v � r, it -a •t�`]'a, 1.7j�,• Ca.: J � B 13 <br />i A. A C <br />C <br />Right Triane[e (- Oblique Triangles <br />l �►ti" p ; y s Solution of Right Triangles <br />a b a_ b c e <br />le Far Angle d.: sin = - cos = s rau = , cot = - sec = -, cosee = - <br />�'q ta' b d <br />f �` '_ f t, ✓ � ` 1 �I. - 3 Given Required 2 a <br />$ \ _ ^� a,b A,IJ,e tan A=b= cot B,c= a j b =a 1+aa <br />V 1 `1;�:� . ' a, c d, Br b rind = = cos l3, L = i/ (o l a7 1 -- o Z <br />� •�; ,✓ `- `� B, b, c B=90° -A, b = acotA,c= a <br />Ein A. <br />Z ' <br />, / a A, b B, a, c B = 90'-A, a = b`tan A, c <br />cos A. <br />A., c A a, b B= 90°-A a = c sin A, b= e cos d <br />Solution of Oblique Triangles <br />Given ' tlevuired 2'sin i3 <br />d, B,a b, c, C b- ,C=1S0°-(d+B),c-asinG' <br />sin sin ?i <br />bsin A <br />._ . ,, \ a A, a, b 13, e, -C sin B = a , C = 180°--(A s n A <br />L ,\ y <br />ca, b, C A, B. c A+ 13=180°- C, tan ?: (A -.B)= (2-b) tan a <br />+ a ' <br />a sin C <br />�j ti sin.A <br />• '• x'73 a+b+ ; !'$ <br />��Tl <br />LY a, b, e A, B, C s = sin A = j 2 - be <br />6. <br />I\XL <br />��� <br />�3 � <br />\; e Area �- area = s(x-cr) ie -b) (s c <br />A, b, c Area area = b e sin .4 <br />�`A -- 2 <br />VVYO <br />d, B, G; a Area a' sin .8 sin (; <br />area = <br />ArL�iofi�� t' 2 sind , <br />% REDUCTION TO HORIZONTAL <br />�� „ �r U Horizontal distance —Slope distance multiplied by The <br />cosineofthevetticalangle.Thus:slopedistance=319.411. <br />h I s \ a�sto�e N q°ort. angle=5° 10'. From Table, Page IX. cos 5° 10'= <br />r ^ c 59. Horizontal distance=31J.4X.9950=318.03 ft. <br />a V 51o'p Pnr�e a <br />Horizontal distance also=Slope distance minus slope <br />j A• ' f14 ' a distance times (1—cosine of vertical anwie)• With the <br />figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine <br />5° 10'=.9359. L—.9359=.0041. <br />819-4X.0041=1.31. 319.4-1.31=318. ft. <br />1. <br />When the rise is known, the borizontal distance is approximately:—the slope dist- r' <br />r } ante less the square of the rise divided by twice the slope distance. Thus: rise=loft., y <br />4' + <br />slope distance=302.6 ft. Horizontal distance=3026— 14 X I4 =302,6-0.32= 301.23 ft, <br />2 X Ant -S <br />• <br />NAGE IN U.S.A. <br />r L J <br />