Laserfiche WebLink
CURVE TABLES. <br />j Published by KEUFFEL 8s ESSER CO. <br />HOW TO USE CURVE TABLES. <br />Table I. contains Tangents and Externals to a F curve. Tan. and <br />1�Ext. toanyotherradius may,befoundnearly enough, bydividing theTan. <br />or Ext. opposite the given Central Angle by the given degree of curve. <br />,j To find Deg. of Curve, having the Central Angle and Tangent: <br />Divide Tan. opposite the given Central Angle by the given Tangent. <br />To find Deg. -of Curve, having the Central Angle and External: <br />Divide Ext. opposite the given Central Angle by the given External. <br />To find Nat. Tan. and Nat. Ex: Sec. for any "angle by Table I.: Tan. <br />or Ext. of twice the given angle divided by the radius of a 1' curve will <br />be the Nat. Tan. or Nat. Ex. Sec. <br />EXAMPLE. <br />1�7anted a Curve with an Ext. of about 12 ft. Angle <br />of Intersection or I. P. =23' 20'. to the R. at Station <br />542+72. <br />Ext. in Tab. I opposite 23' 20' =120.87 <br />1 --120.87=12=10.07. Say a 10' Curve. <br />Tan. in Tab. I opp. 23' 20' =1183.1 <br />1183.1=10=118.31. <br />Correction for A. 23'.20' for a 10` Cur. =0.16 <br />118.31-{-0.16=118.47=corrected Tangent. <br />(If corrected Ext. is required find in same way) <br />Ang.23'20'=23.33'=10=2.3333=L. C. <br />2° 193'=def. for sta. 542 I. P: =sta. 542-}-72 <br />4' 491' = " -x-50 Tan. = 1 .18.47 <br />7' 19"' = rt it it 543 c . L <br />« 1i l{ B. C. =sty. u41 53.53 <br />90 49 "= -{-50 <br />11' 40'= a it is 543+ L. C.= 2 .33.33 <br />86.86 E. C.=Sta. 543-{-86.86 <br />100-53.53=46.47X3'(def. for 1 ft. of 1.0' Cur.) =139.41'= <br />2' 192'= def. for sta. 542. <br />1 . Def, for 50 ft. =2' 30' for a 10' Curve. <br />Def. for 36.86 ft.= 1' 50" for a 10' Curve. <br />Ida? <br />F <br />31- <br />1 <br />st 1r1 <br />hl!- <br />L <br />2jf�fs�� <br />� <br />r <br />— — - <br />A <br />CURVE TABLES. <br />j Published by KEUFFEL 8s ESSER CO. <br />HOW TO USE CURVE TABLES. <br />Table I. contains Tangents and Externals to a F curve. Tan. and <br />1�Ext. toanyotherradius may,befoundnearly enough, bydividing theTan. <br />or Ext. opposite the given Central Angle by the given degree of curve. <br />,j To find Deg. of Curve, having the Central Angle and Tangent: <br />Divide Tan. opposite the given Central Angle by the given Tangent. <br />To find Deg. -of Curve, having the Central Angle and External: <br />Divide Ext. opposite the given Central Angle by the given External. <br />To find Nat. Tan. and Nat. Ex: Sec. for any "angle by Table I.: Tan. <br />or Ext. of twice the given angle divided by the radius of a 1' curve will <br />be the Nat. Tan. or Nat. Ex. Sec. <br />EXAMPLE. <br />1�7anted a Curve with an Ext. of about 12 ft. Angle <br />of Intersection or I. P. =23' 20'. to the R. at Station <br />542+72. <br />Ext. in Tab. I opposite 23' 20' =120.87 <br />1 --120.87=12=10.07. Say a 10' Curve. <br />Tan. in Tab. I opp. 23' 20' =1183.1 <br />1183.1=10=118.31. <br />Correction for A. 23'.20' for a 10` Cur. =0.16 <br />118.31-{-0.16=118.47=corrected Tangent. <br />(If corrected Ext. is required find in same way) <br />Ang.23'20'=23.33'=10=2.3333=L. C. <br />2° 193'=def. for sta. 542 I. P: =sta. 542-}-72 <br />4' 491' = " -x-50 Tan. = 1 .18.47 <br />7' 19"' = rt it it 543 c . L <br />« 1i l{ B. C. =sty. u41 53.53 <br />90 49 "= -{-50 <br />11' 40'= a it is 543+ L. C.= 2 .33.33 <br />86.86 E. C.=Sta. 543-{-86.86 <br />100-53.53=46.47X3'(def. for 1 ft. of 1.0' Cur.) =139.41'= <br />2' 192'= def. for sta. 542. <br />1 . Def, for 50 ft. =2' 30' for a 10' Curve. <br />Def. for 36.86 ft.= 1' 50" for a 10' Curve. <br />