Laserfiche WebLink
TRIGONOMETRIC FORMULlE <br />B B <br />C a Ck a C a <br />b Cdl b CA b C <br />Right Triangle Obli't)ue Triangles <br />Solution of Right 'Triangles <br />a b a b c <br />For Angle A. sin= b 'cot= a, sec = , cosec = <br />a <br />Given Required a a <br />a, b A, B ,c tan 1. = b = cot B, c as -1- <br />a <br />a, e A, B, b sin A = = cos B, b = �/ (c=a) (c—a) ay <br />=c 1—a <br />A, a B, b, r, <br />sin A. <br />A, b B, a; 'e B = 90--A, a = b tan A, c = b <br />cos A. <br />A, c B, a, b B=90°—A, a = 0sin _l, b= e.cosA, <br />Solution of Oblique Triangles <br />Given Required a sin B <br />A, B; a b, c, C b = sin A ' C = 180°—(A + B), e = 'Sin C <br />sin A <br />A, a, b B, c, G' sing= b sin A ,C=180'—(fl.-t-B),a sin C <br />a c= sin <br />a, b, C A, B, c A+B=180°— C, tan 2 (A—D)=. (a—b) tan si (A+B)r <br />a sin C a + b <br />c= <br />sin A <br />A, B, G' s = —2,sin 1,A=-1 b o <br />� (y—a)is—cl <br />sin oB= ,C=130'—(A+B) . <br />ac <br />ac <br />a, b, a Area a+b-I= 2 ,area <br />A, b, c Areab c sin A <br />urea = 2 <br />a' sin B sin C <br />A, B, C, a Area area = 2 sin t, <br />REDUCTION TO HORIZONTAL <br />Horizontal distance= Slope distance multiplied by the <br />e cosineofthe verticalangle.Thus: slope distance =310.4 ft. <br />^e Vert. angle=5° 10'. From 'fable, Page IX. cos 61101= <br />VC a�stia M 9959. Horizontal distance=3l9.4X.0950=318.09 ft. <br />$lotogle ix Horizontal distance also=Slcpe distance minus slope <br />distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 5"10—.9959.1—.9959=.0041. <br />319.4X.0011=1.31. 310.4-1.31=313.09 ft. <br />When the rise is known, the horizontal distance is approximately:—ttie slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=l4 ft., <br />slope distance=302.6 ft. Horizontal distance=302.6— 14 X 14 =303.6-0.32=302.29 ft. <br />2 X 302.6 <br />