Laserfiche WebLink
TRIGONOMETRIC FORMUL,-E <br />,. <br />cl c f tj :2 <br />to <br />A C <br />0:3 <br />CAA b C b <br />Right Triangle Oblique Triangles J <br />Solution of Right Triangles <br />5 <br />For Angle A., sin = ,cos = b ,tan = b , cot = a , sec = 6 , cosec = a <br />, <br />Given <br />a, b <br />Required <br />B <br />az <br />tan A = = cot B, c = , - = = a 1 f <br />G 3 <br />.4, ,.c <br />b az <br />' ��,"� 1•, 21 tAS <br />ll a,c <br />4>B, b <br />= a = — — — aE n <br />sin cos B,b—�(DIa)(c a)—e `I1 -0s <br />�1b <br />a <br />c86 ave) 3�"I 4,S <br />A, a <br />B, b, c <br />B=90°—A, b = acotA,c= sin A. <br />_IrF�^ —}i <br />A, b. <br />B, a, c <br />B = 90'—A, a = b tan A, c = <br />cos A. <br />iUt$, G- �?Y fl <br />A,c <br />'B,a, b <br />B=90°—A,(L=esin A,b=ccosA, t+ <br />✓ •�`_�„------ �" <br />Solution of Oblique Triangles <br />r) ' I <br />Given <br />A, B, (L <br />Required <br />b, c, C <br />a sin B 2sin C <br />b = C = 180° —(A + B), c = <br />sin A sin A <br />C. ob <br />A,a,b <br />B,c,C <br />sin A °— ea sin C <br />s:nB= ,C=180 (AtB),c= <br />a sin <br />°— (a—&)tan(41B) <br />b <br />a, C <br />, <br />A, B c <br />A B— <br />�- C, tan _ 1 (-1—B)= .a -i- <br />1 1 -t% So' 1 ?j i!'� <br />_asinC <br />c <br />A <br />- _ <br />sin <br />a, b, 'c <br />-9,B,G <br />a+b-f <br />s= 2 sini:i= J be <br />3 <br />s:n:_,B—�I <br />a c ,C=180 —(A+B) <br />& <br />!( a, b, c <br />Area <br />s = 2 area = 6(8—a) (s— ) (s—c) <br />A , b, a <br />Area <br />area = b c sin A <br />2 <br />a"- sin B sin C <br />- <br />A, B, Q,a <br />Area <br />area = 2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance = Slope distance multiplied by the <br />- <br />cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />Vert. angle=50101. From Table, Page IX. cos 5° lo/- <br />5 e d ,S`o"I <br />X04 Ze <br />9959. Horizontal distance=379.4X.9959=315.09 ft. <br />Horizontal distance also=Slone distance minus slope <br />a distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 5°101=.9959. 1—.9959=.0041. <br />319.4X.0041=1.31. 319.4-1.31=316.09 ft. <br />When the rise is known, the horizontal distance is' approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft., <br />{slope distance=302.6 ft. Horizontal distance=302.6— 14 X 14 =302.6-0.32=302.26 fL <br />- <br />2 X 302.6 <br />' <br />MADE IR w a, A. <br />- <br />/ <br />