Laserfiche WebLink
TRIGONOMETRIC FORMULAE' <br />7 } E B B <br />�2I_Z 2b t v <br />TP <br />A� b <br />9' Right Triangle C Oblique Triangles <br />• Solution of Right Triangles <br />•3.43, , 103, 43 t• a b a b c a <br />For Angle A, sin = c ,cos = c ,tan = b ,cot = a ,sec = b , cosec = <br />a <br />Given Required a <br />A, B ,c tan A = a b = cot B, e = 1V as + z = a 1 -i- az <br />L'v l� a;c A,B,b a— <br />I sin A = = cos B, b = �/ (c a) (c—a) = c 1- <br />- } 02 <br />A, a B, b, e B=90°—A, b= a cotA, c=. a <br />1 �l���11"�''' sin A. <br />% — f <br />A,b <br />B, a, c B=90°—A,a=btan.A,c= b <br />•� <br />cos A. <br />_ A,c B,a, b B=90°—A,a=csin A,b=ecosA, <br />�' t1 Solution of Oblique. Triangles <br />Given Re4hired <br />r a. <br />A, I3, a b, c C b.= asin B C='180°—(A B}, c= asin C <br />sin A sin d <br />5- z tt b sin A a sin' C <br />A, a, b B; q C sin B= a A. <br />=.180'—(A + B), o = sin A <br />Z7 0 a, b, C A, B,-c. 4+B=180°— C, tan'(A:--B)— (a�b) tan (A �B) c _ a sin C a } b <br />f <br />sin A <br />a' b' e A'B,C s=a+ G,sin1..9.=`!.e—be <br />5i»!-B ae c=iso°—(4+B) <br />zG�= a+b1c <br />Q ; .. : t•, '� a, b, c Areas = 2 ,area = V's (.ti—a) (s— ) (s—c <br />bcsin A �l �• <br />A, b, c Area area _- L <br />Area <br />B, a2 sin B sin C <br />G; aarea = 2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal'distance =Slope distance multiplied by the <br />jia��� cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />tq at�pe' Vert. angle =5° 10'. From Table, Page IX. cos BOW= <br />�. tk ass` m 8958: Horizontal distance=3]9.4X.9859=315.09 ft. +s <br />o4e "1e a Horizontal distance also=Slope distance minus slope <br />lr 1 d/ t. P distance times (1—cosine of vertical angle). With the <br />`Ie same figures as in the preceding example, the follow- <br />' Horizontal distance ing result is obtained. Cosine 5°, <br />0'=.9959.1—.8959=.0041. <br />319.4X.0041=1.31. 313.4-1.31=310.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft., <br />11 r slope distance-302.617t. Horizontal distance=302 0-2 X 30I& =302.0-0.32=302.28 ft. <br />MADE 1N U. a, A. <br />