Laserfiche WebLink
VIII <br />TA13LE II. - Radii, Ordinates and Deflections. • Chord =100 ft. <br />Deg.' <br />Radius <br />Mid. <br />Ord. <br />Tan. <br />Dist. <br />Der. <br />Dist. <br />Der. <br />1fnr <br />Deo. <br />Radius <br />Mid. <br />Ord <br />Tan. <br />Dist, <br />lief. <br />Dist. <br />Def. <br />j or <br />Pta <br />2° 17 <br />ft. <br />ft. <br />ft. <br />ft. <br />r <br />1° 59 <br />ft, <br />ft. <br />ft, <br />ft. <br />I <br />0°10' <br />34377. <br />.03G <br />.145 <br />.291 <br />0.05' <br />7° <br />819.0 <br />1.525 <br />6.105 <br />L?.21 <br />2.10 <br />20 <br />17159. <br />.073 <br />.291 <br />.5S2 <br />0.10 <br />20' <br />751.8 <br />1.600 <br />G..i95 <br />12.79 <br />2.20 <br />30 <br />11459. <br />109 <br />.43G <br />.873 <br />0.15 <br />30 <br />764.5 <br />1.637 <br />6.540 <br />13.03 <br />2.25 <br />40 <br />5594.4 <br />.145 <br />.582 <br />1.164 <br />0.20 <br />40 <br />747.9 <br />1.673 <br />6.685 <br />13.37 <br />2.30 <br />50 <br />6575.5 <br />.152 <br />. 727 <br />.1.454 <br />0.25 <br />8 <br />716.5 <br />1.746 <br />6.976 <br />13.95 <br />2.40 <br />1 <br />5729.6 <br />.218 <br />'.873 <br />1.745 <br />0.30 <br />20 <br />GS8.2 <br />1.819 <br />7.266 <br />1.1.53 <br />2.50 <br />10 <br />4911.2 <br />.255 <br />3.018 <br />2.03G <br />0.35 <br />30 <br />G74.7. <br />1.855 <br />7.411 <br />14.82 <br />2.55 <br />20 <br />-4297.3 <br />.291 <br />1.164 <br />2.327 <br />0.40 <br />40 <br />GG1.7 <br />1.892 <br />7.556 <br />15.11 <br />2.60 <br />30 <br />3819.8 <br />.327 <br />1.309 <br />2.618 <br />0.45 <br />9 <br />G37.3 <br />1.965 <br />7.840 <br />15.69 <br />2.70 <br />40 <br />3437.9 <br />:364 <br />1.454 <br />2.909 <br />0.50 <br />20 <br />G14.6 <br />2.037 <br />8.136 <br />16.27 <br />2.80 <br />50 <br />3125.4 <br />.400 <br />1.600 <br />3.200 <br />0.55 <br />30 <br />G03.8 <br />2.07.1 <br />8.281 <br />10.56 <br />2.55 <br />2 <br />2564.9 <br />.436 <br />1.745 <br />3.490 <br />0.60 <br />40 <br />593.4 <br />2.110 <br />8.426 <br />16.85 <br />2.90 <br />10 <br />2644.6 <br />.4731.891 <br />3.751 <br />0.65 <br />10 <br />';73.7 <br />2.10 <br />8.716 <br />17.43 <br />3.00 <br />20 <br />.2455.7 <br />.509 <br />2.036 <br />4.072 <br />0.70 <br />30 <br />546.4 <br />2.292 <br />9.150 <br />18.30 <br />3'.15 <br />30 <br />2292.0 <br />.545 <br />2.151 <br />4.303 <br />0:75 <br />11 <br />.521.7 <br />2.402 <br />9.585 <br />19.16 <br />3.30 <br />40 <br />2148.8 <br />.5S2 <br />2.327 <br />4.654 <br />O.SO <br />30 <br />499.1 <br />2.511 <br />10.02 <br />20.04 <br />3.45 <br />50 <br />2022.4 <br />.:618 <br />2.472 <br />4.045 <br />0.85 <br />12 <br />478.3 <br />2.620 <br />10.45 <br />20.91 <br />3.60 <br />3 <br />1910.1 <br />.655 <br />2.618 <br />5.235 <br />0.90 <br />30 <br />459.3'2.730 <br />10.59 <br />21.77 <br />3.75 <br />10 <br />1809.6 <br />.691 <br />2.763 <br />5.526 <br />0.95 <br />13 <br />4.11.7 <br />2.839 <br />11.32 <br />22.64 <br />3.90 <br />20 <br />1719.1 <br />.727 <br />2.908 <br />.5.817 <br />1.00 <br />30 <br />425.4 <br />2.949 <br />11.75 <br />23.51 <br />4.05 <br />30 <br />1637.3 <br />.764 <br />3.054 <br />6.105 <br />1.05 <br />14 <br />410.3 <br />3.058 <br />12.18 <br />24.37 <br />4.20 <br />40 <br />1562.9 <br />.800 <br />3.199 <br />G.393 <br />1.10 <br />30 <br />396.2 <br />3.163 <br />12.62 <br />25.24 <br />4.35 <br />50 <br />,1495.0 <br />.836 <br />3.345 <br />6.689 <br />1.15 <br />15 <br />333.1 <br />3.277 <br />13.05 <br />26.11 <br />4.50 <br />A <br />1432.7 <br />'.873 <br />3.490 <br />6.980 <br />1.20 <br />30 <br />370.8 <br />3.357 <br />13.49 <br />26.97 <br />4.65 <br />10 <br />1375.4 <br />.909 <br />3.635 <br />7.271 <br />1.25, <br />16 <br />359.3 <br />3.406 <br />13.92 <br />27. S4 <br />4.50 <br />20 <br />1322.5 <br />.945 <br />3.718 <br />7.561 <br />1.30 <br />30 <br />348.5 <br />3.606 <br />14.35 <br />25.70 <br />4.95 <br />30 <br />1273.6 <br />.952 <br />3.926 <br />7.552 <br />1.35 <br />17 <br />338.3 <br />3.716 <br />14.78 <br />29.56 <br />5.10 <br />40 <br />1228.1 <br />1.01S <br />4.071 <br />8.143 <br />1.40 <br />18 <br />319.6 <br />3.935 <br />15.64 <br />31.29 <br />5.40 <br />50 <br />1185.8 <br />1.055 <br />4.217 <br />8.433 <br />1.45 <br />19 <br />302.9 <br />4.155 <br />16.51 <br />33.01 <br />5.70 <br />51146.3 <br />1.091 <br />4.362 <br />8.724 <br />1.50 <br />20 <br />257.9 <br />4.374 <br />17.37 <br />34.73 <br />G.00 <br />10 <br />1109.3 <br />1.127 <br />4.501 <br />.9.014 <br />1.55 <br />21 <br />274.4 <br />4.594 <br />18.22 <br />36.44 <br />6.30 <br />20 <br />1074.7 <br />1.164 <br />4.653 <br />9.305 <br />1.60 <br />22 <br />262.0 <br />4.514 <br />19.08 <br />38.16 <br />6.60 <br />30 <br />1042.1 <br />1.200 <br />4.798 <br />9.596 <br />1.65 <br />23 <br />250.8 <br />5.035 <br />19.94 <br />39.57 <br />0.90 <br />40 <br />1011.5 <br />1.237 <br />4.943 <br />9.886 <br />1.70 <br />24 <br />240.5 <br />5.255 <br />20.79 <br />41.50 <br />7.20 <br />50 <br />982.6 <br />1.273 <br />5.088 <br />10.15 <br />1.75 <br />25 <br />231.0 <br />5.47621.64 <br />43.28 <br />7.50 <br />6'' <br />955.4 <br />1.309 <br />5.234 <br />10.47 <br />1.50 <br />'LG. <br />222.3 <br />5.697 <br />22.50 <br />44.9. <br />7.SO <br />10 <br />929.6 <br />1.346 <br />5.379 <br />10.76 <br />1.S5 <br />27 <br />214.2 <br />5.918 <br />23.35 <br />46.69 <br />8:10 <br />20 <br />005.1 <br />1.382 <br />5.524 <br />11.05 <br />1.90 <br />28 <br />200.7'6.139 <br />24.19 <br />4S.3S <br />5.40 <br />30 <br />881.9 <br />1.418 <br />5.669 <br />11.34 <br />1.95 <br />29 <br />199.7 <br />6.360 <br />25.04 <br />50.07 <br />5.70 <br />40 1 <br />859.9 <br />1.455 <br />5.814 <br />11.63 <br />2.00 <br />30 <br />193.2 <br />6.583 <br />25.58 <br />51.76 <br />9.00 <br />The middle ordinate in inches for any cord of lel:gth (C) is equal to .0012 C'' <br />multiplied by the middle ordinate taken from the above table. Thus, if it <br />desired to bend a 30 ft. rail to fita 10 degree curve, its middle ordinate should <br />be .0012X90OX2.183 or 2.36 inches. <br />TABLE III. Deflections for Sub Chords for Short Radius Curves. <br />Degree <br />of <br />Clave <br />Radius <br />50 <br />31/2 sub chord sin of : def. angle <br />n <br />Length <br />of arc <br />for IOU, <br />sin.',def. ang. <br />12.5 Ft. <br />15 Ft. <br />20 Ft. <br />25 Ft. - <br />30° <br />193.18 <br />1° 51, <br />2° 17 <br />2- 58, <br />T 3°43' <br />101.15 <br />32° <br />181.39 <br />1° 59 <br />2° 25' <br />3°.10' <br />3° 58` <br />1or.J3 <br />34° <br />171. of <br />2° 06' <br />2° 33' <br />3° z1' <br />r ° I2' <br />I01.48 <br />° <br />36 <br />i61.8o <br />2° 13' <br />2° 41' <br />3° 30' <br />4° 26' <br />iof.66 <br />38° <br />153.58 <br />2°.20 ' <br />2° =l9' <br />3° 441 <br />4° 40' <br />I0I.85 <br />40° <br />146.19 <br />2° 27` <br />2° 57' <br />30 5j <br />:}° J4' <br />102.06 <br />42° <br />139.52 " <br />2° 34' <br />3 05' <br />4° 07' <br />5° 08 <br />102.29 <br />44° <br />133.47 <br />2° 41' <br />30,-1 <br />4° 18' <br />1 5° 22' <br />102.:43 <br />460 <br />'127-97 <br />2° 48' <br />3°. 21' <br />4° 29' <br />' 5° 36' <br />102.76 <br />4So <br />12_.92 <br />2° 53, <br />3° 20' <br />4° 40' <br />5° 5()/ <br />163. o0 <br />50 <br />118.31 <br />�° a_' <br />3° 38' <br />4° 51' <br />6° 04 <br />103.24 <br />52° <br />114.06 <br />3° 09' <br />3° 46, <br />5° 02' <br />60 17 <br />103.54 <br />54' <br />110.11 <br />3°16 <br />3°54 <br />5°'13' <br />6°31' <br />103.84 <br />56° <br />1o6.5o <br />3° 22' <br />4° oz' <br />S° <br />60 44' <br />104.14 <br />58° <br />103.14 <br />.3' 229' <br />4° Ici <br />5° 34' <br />6° 57' <br />I04.43 <br />6o° <br />foo.00 <br />3°35' <br />4°1S' <br />5°4427 <br />7°If' <br />104-72 <br />IX <br />CURVE FORMULAS <br />T= R tan 3 I R= T cot. 1 I Chord def. = chord2 <br />r _ 5o tan I <br />_JD R = 50 <br />Sin. I D = �o Sin. a D ' No. chords = I <br />R E= R ex. sec I D <br />Sin.'} D = 56 tan -.1I E = T tan I -Tan. def. _ chord def. <br />The square of any distance,, divided by twice the 'radius, will equal <br />the distance from tangent to curve, very nearly. <br />To find angle for a given distance and deflection. <br />Rule I. Multiply the given distance by .01745 (def. for I° for i ft." <br />see Table'IL), and divide given deflection by the product. <br />Rule 2. Multiply given deflection by 57.3, and divide the product by <br />the given distance. <br />To find deflection for a given angle and distance. Multiply the angle <br />by .01745, and the product by the distance. <br />GENERAL DATA <br />RIGHT ANGLE TRIANGLES. Square the altitude, divide by twice the <br />base. Add quotient to base for hypotenuse. <br />Given Rase loo, Alt. 10.IO'-_200=.5. loo+.5=Ioo.5 hyp. <br />Given Hyp.Ioo,Alt. 25.252=200=3.125.100-3.125=96.875=Base. <br />Error in first example, .002; In last, .045. <br />To find Tons of Rail in one mile of track: multiply weight per yard <br />by i i, and divide by 7. <br />LEvEhING. The correction for curvature and refraction, in feet <br />and decimals of feet is equal to 0.574 da, where d is the distance in miles. <br />The correction for curvature alone is closely, ;de. The combined cor- <br />rection is negative. <br />PROBABLE ERROR. If d,, de, d;,, etc. are the discrepancies of various <br />result3 from the mean, and if fid==the sum of the squares of these differ- <br />ences and r.=the number of observations, then the probable error of the <br />mean= oda <br />± 0.6745. <br />11 (n-1) <br />SOLAR ErrimiFizis. Attention is called to the Solar Ephemeris for <br />the current year, published by Keuffel & Esser Co., and furnished free of <br />charge upon request, which is 3;x5l, in., with about 90 pages of data very <br />useful to the Surveyor; such as the adjustments of transits, levels and <br />solar attachments; directions and tables for determining the meridian <br />and the latitude from observations on, the sun and Polaris; stadia meas- <br />urements; magnetic declination; arithmetic constants; English and Metric <br />conversions; trigonometric formulas; Natural andLogarithmic Functions; <br />and Logarithms of Numbers. <br />TABLE IV. - Minutes in Decimals of a Deuce. <br />P <br />.0167 <br />11' <br />.1833 <br />21' <br />.3500 <br />31' <br />.5167 <br />41' .6833 <br />51' <br />.8500 ' <br />2 <br />.0333 <br />12 <br />.2000 <br />22 <br />.3667 <br />32 <br />..5333 <br />42 .7000 <br />52 <br />.8667 <br />3 <br />.0500 <br />13 <br />.2167 <br />23 <br />.31333 <br />0, 3' <br />.5500 <br />43 .7167 <br />53 <br />•8533 <br />4 <br />.0667 <br />14: <br />.2333 <br />21: <br />.4000 <br />3.4 <br />. SGG7 <br />44 .7333 <br />54 <br />' :9000 <br />5 <br />OSI -13 <br />15 <br />.2500 <br />25 <br />!-167 <br />35 <br />.5333 <br />45 .7600 <br />55 <br />'.9167 <br />G <br />.1060 <br />1G <br />.2S67 <br />26 <br />:333 <br />3G <br />.6000 <br />4G .7667 <br />56 <br />.9333 <br />7 <br />.1167 <br />17 <br />.2533 <br />27 <br />.4500 <br />37 <br />.6167 <br />47 .7533 <br />57 <br />.9500 <br />8 <br />.1333 <br />15 <br />.3000 <br />28 <br />.5667 <br />38 <br />.6333 <br />48 -000 <br />,5S <br />.9667 <br />9 <br />.1500 <br />19 <br />.3167 <br />'T9 <br />.4833 <br />39 <br />.6500 <br />49 .3167 <br />59 <br />.9S33 <br />10 <br />.1661 11 <br />20 <br />1 .3333 <br />1130 <br />1 .5000 <br />11 40 <br />1 .G667 1150 <br />1 .5313',J <br />GO <br />11.0000 <br />TABLE V. - Inches in Decimals of a Foot. <br />1-16 <br />3-32 <br />% <br />3-1G <br />/.y <br />5-1G <br />;�.W73'13 <br />.003^_ <br />0078 <br />.0104 <br />.0156. <br />.0208 <br />.0260 <br />.03.0729 <br />1 <br />2 <br />3 <br />4 <br />5 <br />G <br />.0333, <br />.1667 <br />.3500 <br />.3333 <br />.4167 <br />.5000 <br />.'5.91.67 <br />