Laserfiche WebLink
t� <br />" reel 6w <br />rs. <br />See' Fg /3 <br />P°fes 2�' <br />.Nl, <br />fa0, 00 <br />®� �.� <br />3, 36 <br />ro�,�3� <br />•;� G.� <br />9.7G <br />T'' M cam: <br />^.0910 <br />G <br />of <br />�. 3 <br />�% <br />a] <br />flo, <br />- <br />�iYdua� <br />4,3 <br />r� <br />�t64 <br />9 <br />la>, 4�r <br />- <br />1i <br />Z f 27 <br />t 3 <br />% tri, <br />Co61 <br />0+ 8e, <br />c G _ <br />_jY-.3 Z— <br />„7/ <br />c, <br />�1 <br />(� <br />-� • � <br />8, <br />rrr�� _ <br />�� <br />(+1.99 <br />r <br />1c <br />6,( <br />6,$ <br />voter -i <br />2'20 <br />�t. <br />•.. <br />--- <br />� <br />3 • a5- <br />.1 <br />% <br />� <br />�, � <br />/�� ole <br />�q 1.x <br />1 <br />� 'mss � '1G4 :-�� j `� ;;• ¢en TABLES' <br />g.✓ .�fz Y•pc.. a r4'f 9>.�.76Zs`CURVE TABLE5`�pG� °fo <br />9, .. ,` <br />. .9Y. <br />S Published by KEUFFFIr. 8v ESSER CO. 9 f�G9 <br />, ✓� y6y.gb g �ect'l 6.0u y.8.93 <br />HOW TO USE CURVE TABLES s' <br />-- Ed9< CO <br />rN f,s, , �,:! ` - <br />Table I. contains Tangents and Externals to a 1° curve. Tan. and <br />Ext. to any other radius maybe found nearly enough, bydividing the Tan, t <br />or Ext. opposite the given Central Angle by the given degree of curve. 4 <br />To' find Deg. of Curve, having the Central Angle and Tangent: <br />Divide Tan. opposite the given Central Angle by the given Tangent. <br />To find Deg. of Curve, having the Central Angle and External: <br />Divide Ext. opposite the given Central Angle by the given External. <br />To find Nat. Tan. and Nat. Ex. Sec. for any angle by Table I.: Tan. <br />or Ext. of twice the given angle divided by the radius of a 1° curve will <br />be the Nat. Tan. or Nat. Ex. Sec. <br />EXAMPLE. <br />•.5.. Wanted a Curve with an Ext. of about 12 ft. Angle EvS, <br />Intersection or I. P.=23° 20' to the R. at Station E,��^ <br />542-x-72. <br />Ext. in Tab. I opposite 23° 20' =120.87 t J -o ,, I i <br />120.87=12=10.07. Say a 10° Curve. <br />Tan. in Tab. I opp. 23° 20'=1183.1 J., <br />� � 1183.1=10=118.31. <br />' <br />'','Correction for A.23° 20' for a 10° Cur. =0.16 `J8.7� <br />118.31-x-0.16.=118.47=corrected Tangent. <br />(If corrected Ext. is required find in same way)- <br />Ang. 23° 20'=23.33' 10 = 2.3333 = L. C: <br />2° 192'=def. for sta. 542 I. P. =sta. 542+72 <br />40 49 1 r = a cc it +50 Tan. = 1 .18.47 <br />° 7t= cL « <br />9°491'= " " -I 50 B.C.=stn. 541+53.53 <br />110 40' = " " 543 } L. C. = 2 .33.33 <br />86.86 E. C.=Sta. 543+86.86 79,7/ <br />100-53.53=46.47X3'(def. for 1 ft. of 10° Cur.)=139.41'= Sq <br />2° 191F= def. for sta. 542.. <br />Def, for 50 ft. =20 30' for a 10° Curve. d 82 <br />Def. for 36.86 ft. =1° 502' for a 10° Curve. 77. 68 <br />S,. Sax T. <br />> <br />I.P.An 9.23°20' 77,SS <br />10° Curve <br />T 1 ,70 <br />w4 d <br />.72- <br />W , 72- <br />