|
Help
|
About
|
Sign Out
Home
Browse
Search
Pg 82
DaneCounty-Planning
>
Clerical
>
Sam
>
Fricky
>
FBs
>
140
>
Pg 82
Metadata
Thumbnails
Annotations
Entry Properties
Last modified
3/7/2025 2:51:01 PM
Creation date
3/7/2025 2:50:59 PM
Metadata
There are no annotations on this page.
Document management portal powered by Laserfiche WebLink 9 © 1998-2015
Laserfiche.
All rights reserved.
Page 1 of 1
PDF
Print
Pages to print
Enter page numbers and/or page ranges separated by commas. For example, 1,3,5-12.
After downloading, print the document using a PDF reader (e.g. Adobe Reader).
Show annotations
View images
View plain text
3L -7 76 <br />S� g /0 <br />CURVE TABLES. - g <br />Published by KEUFFEL a- ESSER . CO. Z <br />HOW=�TO.USE CURVE TABLESa-.10 curve. Tan. alld <br />. S <br />to <br />Table I. contains Tangents andExaeilnenou h,bydi idingtheTan�'J�✓� ` <br />Ext. to any other radius may be found ne y g. <br />or Ext. opposite the given.Central Angle by the given degree of curve. <br />To find Deg. of Curve; having the Central Angle and Tangent: <br />Divide Tan. opposite the given Central Angle by the given Tangent. <br />'To find Deg. of Curve, having the Central Angl <br />ea d External: <br />Ext. oposite the givenxternal <br />pCentral Angle by the given <br />To find Nat. Tsn. and Nat. Ex. Sec. for any angle by Table I.: Tan. <br />or Ext. of twice the given angle divided by the radius of a 1° curve will <br />be the Nat. Tan: or Nat. Ex. Sec. <br />EXAMPLE. <br />Wanted a Curve with an Ext. of about 12 ft. Angle <br />of Intersection or I. P.=23° 20' to the R.-at_S.tation� <br />542-L72. <br />E10�S7T31 b. I 023* 20' 120.87 <br />10.07. Say a 10° Curve. <br />g/ <br />Tan. in Tab. I opp. 23° 20' =1183.1 S .y 44 <br />1183.1-10=118.31. <br />Correction for A. 23° 20' for a 10° Cur. =0.16 <br />118:31-}-0.16 =118.47 =corrected Tangent. <br />(If corrected Ext. is required find in same way) <br />Ang. 23° 20'=23.33°=10=2.3333=L. C. <br />2° 19 '= def. for sta. 542 T. P—sta 5. 1 I.18 ' Z? ? <br />I, _ « as « +50 Tan. = 1 .18.47 � <br />4-4 9 i1 -7-z- <br />7 0 <br />7° 191'= t: 543 B. C.=sta_ 541+53.53 T—S-6 - <br />9° 491' _ . " " +50 I C. _ . 2.33.33 <br />lio 40, <br />543 <br />86.86 E. C. =Sta. 543+SG.86 5 <br />100-53.53=46.47 X3'(def. for 1 ft. of 10° Cur.) =139.41'= Yy <br />2° 19 ' adef. for sta. 542. <br />Def. for 50 ft. =2° 30' for a 10° Curve. Z-1 <br />7 <br />Def. for 36.56 ft. 1* 501' for a 10° Curve. i <br />S4 - <br />�2 <br />I.P.An9.23.20' <br />N /,e <br />,� 4A <br />P <br />f0• Curve <br />y� <br />P 4d/ <br />v xi <br />dye <br />f• <br />S <br />� � <br />� <br />;. j it <br />� � <br />i � • <br />XIr 6 <br />27 <br />,65 75' <br />/�� <br />L <br />7L <br />L/` <br />� � - <br />3L -7 76 <br />S� g /0 <br />CURVE TABLES. - g <br />Published by KEUFFEL a- ESSER . CO. Z <br />HOW=�TO.USE CURVE TABLESa-.10 curve. Tan. alld <br />. S <br />to <br />Table I. contains Tangents andExaeilnenou h,bydi idingtheTan�'J�✓� ` <br />Ext. to any other radius may be found ne y g. <br />or Ext. opposite the given.Central Angle by the given degree of curve. <br />To find Deg. of Curve; having the Central Angle and Tangent: <br />Divide Tan. opposite the given Central Angle by the given Tangent. <br />'To find Deg. of Curve, having the Central Angl <br />ea d External: <br />Ext. oposite the givenxternal <br />pCentral Angle by the given <br />To find Nat. Tsn. and Nat. Ex. Sec. for any angle by Table I.: Tan. <br />or Ext. of twice the given angle divided by the radius of a 1° curve will <br />be the Nat. Tan: or Nat. Ex. Sec. <br />EXAMPLE. <br />Wanted a Curve with an Ext. of about 12 ft. Angle <br />of Intersection or I. P.=23° 20' to the R.-at_S.tation� <br />542-L72. <br />E10�S7T31 b. I 023* 20' 120.87 <br />10.07. Say a 10° Curve. <br />g/ <br />Tan. in Tab. I opp. 23° 20' =1183.1 S .y 44 <br />1183.1-10=118.31. <br />Correction for A. 23° 20' for a 10° Cur. =0.16 <br />118:31-}-0.16 =118.47 =corrected Tangent. <br />(If corrected Ext. is required find in same way) <br />Ang. 23° 20'=23.33°=10=2.3333=L. C. <br />2° 19 '= def. for sta. 542 T. P—sta 5. 1 I.18 ' Z? ? <br />I, _ « as « +50 Tan. = 1 .18.47 � <br />4-4 9 i1 -7-z- <br />7 0 <br />7° 191'= t: 543 B. C.=sta_ 541+53.53 T—S-6 - <br />9° 491' _ . " " +50 I C. _ . 2.33.33 <br />lio 40, <br />543 <br />86.86 E. C. =Sta. 543+SG.86 5 <br />100-53.53=46.47 X3'(def. for 1 ft. of 10° Cur.) =139.41'= Yy <br />2° 19 ' adef. for sta. 542. <br />Def. for 50 ft. =2° 30' for a 10° Curve. Z-1 <br />7 <br />Def. for 36.56 ft. 1* 501' for a 10° Curve. i <br />S4 - <br />�2 <br />I.P.An9.23.20' <br />N /,e <br />,� 4A <br />P <br />f0• Curve <br />y� <br />P 4d/ <br />v xi <br />
The URL can be used to link to this page
Your browser does not support the video tag.