Laserfiche WebLink
Jl- tr' <br />��•-'3 -? f :- •-t-'�^ � �• • <br />4 <br />TRIGONOMETRIC FORMULfE <br />J6 �'�%� S_� - `. I3 B B <br />_ I <br />a <br />1 303�� <br />c a - c a <br />Y i 9 J,_ ,t -` ., �. CI d b G' A b C <br />T RightNriangle. Oblique Triangles <br />Solution of Right Triangles <br />L �u a b a b c c <br />r (/ For An ic'A. sin = — , cos = , tan= b , cot = , sec = b , cosec = <br />�':' { g — <br />1.� Given Required c a Z 2 a <br />a, b A, B ,c - tan A = — = cot B, c = a2 <br />{ ra 6 $ a <br />A, B, b sinA= = — =cos B, b = �/ (c-�(L)-(c—a•) = C 1— 9 <br />%. y ,�- <br />,;.r 1' � o y � :a � . <br />L�Y A,a B, b, c B=90°—A, b.= acotA,ca y <br />�� V �� � . •- • sin�A, <br />� 5; 7 �� _,' �' A, b B, a; e B=90°—d,a = btan_4,c= <br />Q _/ cos A. <br />� ✓ i�'r "' 9•9 7" 7' < i6 T c! A,c' B,a, b' =90°—,a*=asinAbA <br />,=ccos, �� 1•Ggi.il rY <br />I; h G ' BA`P <br />_ � . o tit, 0 !� _ I Solution of Oblique Triangles <br />/ Given Required <br />_ a sin .B r_ y ° a sin C <br />` A' B' a. I b' �'. C .b sin A , G 80 —(d T B), c = sin A <br />21,f b sin A a sin C <br />r_% A,a,b I3,o,C sing= a ,C=180°—(-4 (I3)rc= sinA_�% <br />3ti <br />r <br />r • - f?�. v a, b, C A, B, c A+B=180 — G, tan (A—B)— a—b tan - A B <br />a.� 6 k — a sin C <br />sin.A <br />�e. 't_ —_ c -� r.• l i%Y ¢, b, c A, B, C s-a+2+c sin .9=`lt` plc—a) <br />sin'B=� a(•c <br />B <br />c)' a� <br />{ 2 80. -(� ) <br />a; b, c Area s= 2 ,area = s(s—a = �)'(s—c) <br />b <br />/�� <br />�' %y ; , b; c Area area = b <br />� A <br />C sin A <br />2 F <br />AB, C, a? sin B sin C <br />, a Area area = 2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance= Slope distance multiplied by the <br />4 /x cosine of the vertical angle. Thus: slope distance=319.4 ft. <br />`3 a%S�Q�ce 0 .99 9. Horiizontal distance 19.4TableX. 959=3 8.09 ft.Ix. Cos 1(Y <br />! 1. %%ope �bg1c i~ Horizontal distance also=Slope distance minus slope <br />4V; ��- I; yet. distance times (1—cosine of vertical angle). With the <br />k� - —_-� same figures as in the preceding example, the follow- <br />�. S�' ' " `gg• Horizonial distance ing result is obtained. Cosine 30101=.9959.1—.9959=.0041. <br />319.4X.0011=1.31. 319.4-1.31=31&09 ft. <br />1 When the rise is known, the horizontal distance is approximately:—the slope dist- ' <br />ante less the square of the rise divided by twice the slope distance. Thus: rise=14 ft., <br />` slope distance=302.6 ft. Horizontal distance=302.6— 14 X 14•=302.6-0.32=302.28 it. <br />2 X 303 6 <br />' - - MADE IN U.S.A. <br />