Laserfiche WebLink
TAIAX II. - Radii, Ordinakes•and Deflections. Chord =100 ft. <br />--- <br />Deg.' <br />Radius <br />olid. <br />Ord. <br />Tan. ' <br />Dist. <br />Def. - <br />Dist. <br />Def. <br />Lfort.: <br />Deg. <br />Radius <br />Mid. <br />O,d. <br />T.S. <br />Dist: <br />'Def. - <br />Dist. <br />Def. <br />fcr <br />1 Ft. <br />-- <br />ft. <br />ft.. <br />IE <br />[Lf <br />101.15 <br />32° <br />t. ft, <br />- ft. <br />ft, <br />ft. <br />r <br />0°10' <br />34377-' <br />.030 <br />.145 <br />..291 <br />0.05 <br />7" <br />819.0 <br />1.528 <br />6.105 <br />12.21 <br />2.10 <br />20 <br />17189. <br />.073, <br />.291 <br />.5S2 <br />0.10 <br />20' <br />781.8 <br />1.600 <br />6.395 <br />12.79 <br />2.20 <br />30. <br />11459. <br />.109 <br />.436 <br />.873 <br />0.15- <br />30 <br />764.5 <br />1.037 <br />6:540 <br />13.08 <br />2.25 <br />40' <br />8594.4 <br />.145 <br />.582 <br />1.104 <br />0.20 <br />40 <br />747.9 <br />1.673 <br />6.035 <br />13.37 <br />2.30 <br />50' <br />6875.5 <br />.182 <br />.727 <br />1.454 <br />0.25 <br />8 <br />716.5 <br />1.746 <br />6:976 <br />13.95 <br />2.40 <br />1 <br />5729.6 <br />.218 <br />.573 <br />1.745 <br />0.30 <br />20 <br />68S.2 <br />1.819 <br />7.2GG <br />14.53 <br />2.50 <br />10 <br />4911.2.255 <br />3° 54 <br />1.018' <br />2.036 <br />0.35 <br />30 <br />674.7 <br />1.855 <br />7.41L <br />1.4.82 <br />2.55 <br />20 <br />4297.3 <br />.291 <br />1.164 <br />2.327 <br />0.40 <br />40 <br />661.7, <br />1.592 <br />7.556 <br />15.11.2.60 <br />4° 18' <br />30 <br />- 3819.8 <br />.327 <br />1.309 <br />2.618 <br />0.45 <br />9 <br />637.3 <br />1.965 <br />7.846 <br />15.69 <br />2.70 <br />40 <br />3437.9 <br />.364 <br />1.454 <br />2.909 <br />0:50 <br />20 <br />614.6 <br />2.037 <br />8:1.36 <br />16.27 <br />2.80 <br />50',3125.4 <br />.400 <br />1.600 <br />3.200 <br />0.55- <br />30 <br />G03.8 <br />2.074 <br />8.25116.56 <br />2.85 <br />2 - <br />2864.9 <br />.436 <br />1:745 <br />3:490 <br />0.60, <br />40" <br />593.4 <br />2.110 <br />8.426 <br />16.85 <br />2.90 <br />10 <br />2644:6 <br />-,473 <br />1.891' <br />3.781 <br />0.65 <br />10 <br />573.7 <br />2.183 <br />8.716.17.43 <br />3.00 <br />-'20 <br />2455.7 <br />.509 <br />2.030 <br />4.072 <br />0.70 <br />30 <br />546.4 <br />2.292 <br />9.150 <br />18.30 <br />3.15 <br />30 <br />2292.0 <br />.545 <br />2.151, <br />4.363 <br />0.75 <br />11 <br />521.2 <br />2-402 <br />9.585 <br />19.16 <br />3.30 <br />40 <br />2148.8 <br />..582 <br />2:327' <br />4,654 <br />0.60 <br />30 <br />499.1 <br />2.511 <br />10.02 <br />20.04 <br />3.45 <br />50 <br />2022.4 <br />.618 <br />2.472 <br />°4,945 <br />0:85 <br />12' <br />478.3 <br />2.620 <br />10:45 <br />20.91 <br />3.60 <br />$ <br />1910.1 <br />.655 <br />2.615 <br />5,235 <br />0.90 <br />30 <br />459.3 <br />2.730 <br />10.59 <br />21.77 <br />3.75 <br />10. <br />.1809:6 <br />.691 <br />2.763 <br />5.526 <br />0.95 <br />13 <br />441.7 <br />2.839 <br />11.32 <br />22.64 <br />3.90 <br />20 <br />1719.1 <br />.727 <br />2.908 <br />5.817 <br />1.00 ' <br />30 <br />42.5.4 <br />2,049 <br />11.75 <br />23.51 <br />4.05 <br />,30 <br />'1637:3 <br />,.764 <br />3.054 <br />6.108 <br />1.05 <br />14 <br />410,3 <br />3.058 <br />12;15 <br />24.37 <br />4.20 <br />40 <br />1562.9 <br />.800 <br />3.199 <br />6.398 <br />1.10 <br />30 <br />396.2 <br />3.168 <br />12.62 <br />25.24'4.35 <br />50 <br />1495.0. <br />:.830 <br />3.343 <br />6.689 <br />1.15 <br />15. <br />383.1 <br />3.277 <br />13.05 <br />26,11 <br />4.50 <br />! <br />1432:7 <br />.873 <br />3.490 <br />6.980 <br />1.20 <br />'30 <br />370.8 <br />3: =5 <br />13.-40 <br />26.97 <br />4.65 <br />10 <br />1375'.4 <br />.909 <br />3.633 <br />7.271 <br />1.25 <br />16 <br />359.3 <br />3.496 <br />1'3.92 <br />27:84 <br />4.50 <br />20 <br />1322.5 <br />.945 <br />3:718 <br />7.501 <br />1.30 <br />. 30 <br />348.5 <br />3.606 <br />14.35 <br />28.70 <br />4.95 <br />30 <br />1273:6 <br />.982 <br />3.920 <br />7:852 <br />1.35, <br />11 <br />338.3 <br />3.716 <br />14..78 <br />29.56 <br />5.10 <br />40 <br />_1228.•11.018 <br />4.071 <br />8.143 <br />1.40 <br />18 <br />319.6 <br />3.935 <br />15.04 <br />31.29 <br />5.40 <br />50 <br />1185.8 <br />1.055 <br />4.217 <br />8.433 <br />1.45 <br />19 <br />302.9 <br />},155 <br />16.51 <br />33.01 <br />5.70 <br />5 <br />1140.3 <br />1.091- <br />4.362 <br />8.724 <br />1.50 <br />20 <br />287.9 <br />4.374 <br />17.37. <br />34.73 <br />6.00 <br />10 <br />1109.3 <br />1.127 <br />4.507 <br />'9.014 <br />1.55 <br />21' <br />274:4 <br />4.594 <br />18.22- <br />36.44 <br />6.30 <br />`20 <br />1074.7 <br />1.164 <br />4.653 <br />-9.305 <br />L.GO <br />22 <br />262.0 <br />4.814 <br />19.08 <br />38.16 <br />6.60 <br />30 <br />1042..1 <br />1.200 <br />4.798 <br />9.596 <br />1.65 <br />23 <br />250.8 <br />5.035 <br />19.94 <br />39:87 <br />6.90 <br />40 <br />1011.5 <br />1.237 <br />4.943 <br />9.88G <br />1.70 <br />•24 <br />240.5 <br />5.255 <br />20.79 <br />41.55 <br />7.20 <br />50 <br />982.6 <br />1.273, <br />5.058 <br />10.18 <br />1.75 <br />25 _ <br />231.0 <br />5.476 <br />21.64 <br />43.28 <br />7.50 <br />6 <br />905.4 <br />1.309 <br />5.234 <br />10.47 <br />1.80' <br />26 <br />222.3 <br />5.697 <br />22.50 <br />44.99 <br />7-rS0 <br />10" <br />929.6 <br />1.346 <br />5.379 <br />10-.7G. <br />1.85 <br />27" <br />214.2 <br />5.918 <br />23.35 <br />46.69 <br />S.10 <br />20 <br />. '905.1 <br />1.3S2 <br />5.524 <br />11-05 <br />.1.90 <br />28 <br />206.7 <br />G.139 <br />24.19 <br />48.3S <br />8.40 <br />30 <br />881.9 <br />1'.418 <br />5.669 <br />11.34 <br />1.95 <br />29 <br />199.7 <br />6.3GO <br />25.04 <br />50.07 <br />5.70 <br />40 <br />.'859.9 <br />1.455 <br />5.514 <br />11.63 <br />2.00. 1 <br />30 <br />193.2 <br />6.583 <br />25.88 <br />51.76 <br />9.00 <br />The middle. ordinate in inches for any cord, of length (C) is equal to .0012 C" <br />multi111ied by the middle ordinate token. from the above table. Thus, if it <br />desired to bend a 30 ft, rail to fit a 10 degree'curve, its middle ordinate -should <br />be .Q012X900X2.163 or 2.36 inches. <br />TABLC III. Deflections for Sub Chords for Short Radius -Curves. <br />Degrofee <br />"l7adins. <br />. .50. <br />'�Bubchord <br />Tt = Bin of def. angle <br />Loingth <br />Curve <br />sin. Fdef. ano <br />, t2.5 Ft. <br />15 Ft. <br />20 Ft. <br />25 Ft.. <br />for 100 ft. <br />30° <br />193•18 <br />1° 51, <br />17' <br />2 58, <br />3° 43'.. <br />101.15 <br />32° <br />281.39 <br />I° 59' <br />° 25` <br />3° lo' <br />3158, <br />101.33 <br />34°- <br />171. 01' <br />2° 06' <br />^° It <br />3° 21' <br />° 12' <br />101.48 - <br />360 <br />16T.86 <br />.2° 13:`. <br />2°'41`, <br />3° 33'4' <br />?6' <br />io1.66 <br />38° <br />153.58 <br />2,20,- <br />2° 49 <br />3° 44' <br />4° 40' <br />101 , 85 <br />40° <br />146,.19 <br />2027' <br />2° 57 <br />3°55' <br />4'54' <br />102.o6 <br />42, <br />134.52 <br />-.34 <br />3.05P <br />4° 071. <br />5° 08' <br />102:29 <br />44° <br />133-47 <br />2° 41' <br />3°'13' <br />4° 48' <br />5°22' <br />102.53 <br />46° <br />127.97 <br />2°'481 <br />3°21' <br />4°a9' <br />S°36' <br />IO2:76 <br />4S°. <br />122.92 <br />20 551 <br />3* 29' <br />4° 40'1 <br />50' <br />103. GO <br />50° _ <br />115.31 <br />3° 02' <br />3, 38° <br />4° 51' <br />G° o4' <br />103.24 <br />28 <br />114:06 <br />3° 09' <br />3° 46' <br />5° 02' <br />. G°.1;' <br />103.54 <br />54o <br />110.11: <br />3°-16' <br />3° 54 <br />5° 13 <br />G°31' <br />103,84 <br />56° <br />fo6.50 <br />3° 22'4° <br />02' <br />5° 23, <br />6° 44" <br />104.14 <br />58° <br />103.14 <br />3° 29' <br />4° 10' <br />5° 34` <br />6° 57' <br />104.43 <br />600 <br />100.00 1 <br />3° 35" 1 <br />4° 18' <br />S° 44' <br />7° 11' <br />1 104.72 <br />TX <br />CURVE FORM ELAS <br />T = .It tan zd R T cot. z I Chord def. = chord2 <br />,I _ 5o tan f I R <br />Sin.I D R_= 50f - <br />} I <br />Sin. I D = 50 Sin. 2 D No. chords- = <br />12E= R ex. sec 1 I v <br />50 tan <br />Sin. ly:i3;. I E = T tiara li l Tan. def.=, chord def.. <br />The square of any distance, divided by twice the radius, will equal <br />the distance. from tangent to curve, very, nearly. <br />To find angle for a given distance and deflection. <br />Ruled. Multiply the given distance by .01745 (def. for l° for 1 ft. <br />see Table H.), and divide given deflection by the product. <br />Rule 2. Multiply given, deflection by 57.3, and divide the pr6duct by <br />the given distance. <br />To find deflection for a given angie.and-distance. Multiply the angle <br />by .0174; and the product.by the distance. <br />GENERAL DATA <br />RIGHT ANGLE TRIANGLES, Square the altitude, "divide, by. twice' the. . . <br />base. Add quotient to base for hypotenuse:. _. - <br />Liven Base loo, Alt: J0.l02=200=:5. loo+.', ioo.5 hyp. <br />Given Hyp. 1oo,Ait.25.252-'200=3.125.100=3:125=96.875=Base. <br />F-rrer 1n first example,::002;, in last, .045•. <br />To find Tons. of -Rail in one mile of trach: multiply weight per yard <br />by 11 and divide by 7. - <br />-LEVELING. The correction ,for curvature and refraction, in feet <br />and decimals of feet is equal to 0; 574da, where d=is the distance in miles. <br />The correction for curvature alone is -closely, idP. The combined cor- <br />rection is negative.. ' <br />P1013ASL8ERROR. If d„d2,d,,,etc. are the discrepancies of various. . <br />results from the, mean, and if FdI=the sum of the squares'of these differ- <br />ences and n=the number of observfations, then the -probable error of the <br />mean= <br />SOLAR EP116.1ERIS. Attention.is,calied to the Solar Ephemeris for <br />the current year, published by Keuffel & Esser Co., and furnished free of <br />charge upon request, which is 3 Jyx5A in,, with about 90 pages of data very <br />useful to the Surveyor; such as the adjustments of transits, levels and <br />solar attacllments; directions and tables for.' determining the meridian <br />and the latitude from observations on the sun and Polaris; stadia meas- <br />urements; magnetic declination; arithmetic constants; English and Metric <br />conversions; trigon ometric formulas; Natural andLogarithmic Functions; <br />and Logarithms of Numbers. <br />Teur.v 117 _ Rdinii+a° in TV,; -1, -of of n. rlaaraa- ' <br />I' <br />.0167 <br />11'• <br />.1833 <br />.3500 <br />31' <br />.5167 <br />41' <br />.6533 <br />51' <br />3500 <br />2 <br />0333 <br />12 <br />.2000 <br />!21' <br />922 <br />.3667 <br />32 <br />.5333 <br />42.7000 <br />020S <br />52 <br />8667 <br />3 <br />.0500 <br />13 <br />.2167 <br />I 23 <br />.3833 <br />33 <br />.5500 <br />43 <br />,7167 <br />.53 <br />.8833. <br />4.0G67 <br />10 <br />14 <br />0833 <br />24 <br />.2 500, <br />34 <br />.5667 <br />44 <br />.7333 <br />54 <br />.9000 <br />5 ` <br />0533 <br />15 <br />.2333 <br />.^500 <br />�25 <br />.4000 <br />.4167 <br />35 <br />.5833 <br />45 <br />.7500 <br />55 <br />.91G7 <br />6 <br />.1000 <br />i6 - <br />.2667 <br />2G <br />4333 <br />36 <br />.6000 <br />40 <br />.7667 <br />56 <br />9333 ' <br />. <br />7' <br />.1107 <br />17 <br />..2S33 <br />37 <br />_500 <br />37. <br />-.6167 <br />47 <br />.7533 <br />57. <br />.9500 <br />8 <br />:1333 <br />18 <br />:3000 <br />28 <br />.4667 <br />•38 <br />.0333 <br />48 <br />.3000 <br />58 <br />.9607 <br />9 <br />.1500 <br />19 <br />.3167 <br />29 <br />.4833 <br />'39 <br />,G500 <br />49 <br />.^107 <br />59 <br />.9533 <br />10 <br />.1667 11 <br />20 <br />.3333 <br />'30 <br />1 .5000 <br />49 <br />1 .6667 <br />1150 <br />1 .5333 <br />I I GO <br />•1,0000 <br />TADLE V. - <br />inches in Decima12 of a I1oot. <br />1-16 <br />"-32 <br />3-1G <br />5-1G <br />r <br />/a <br />.00.;2 <br />.0075 <br />.0104 <br />.0186 <br />020S <br />-0260 <br />-.0313_ <br />.0417 <br />.0521 <br />.0625 <br />.0729_ <br />1 <br />2 <br />3. <br />4 <br />5 <br />G <br />7 <br />8 <br />9 <br />10 <br />it <br />0833 <br />.1667 <br />.2 500, <br />.3333 <br />.4167 <br />.5000 <br />.5533 <br />.6667 <br />.',wo <br />'.8333 <br />.9167 <br />