Laserfiche WebLink
VIII <br />TABUQ II. = Riidii, Qrdinates and Deflections. Chord=100 ft. <br />Deg_-' <br />I <br />! Radius .a'�rd <br />hLd <br />Tan. <br />° <br />Bef. <br />)1st. <br />"Def <br />11fFf. <br />.. Deo-,' <br />Radius <br />NEI <br />1Jrd: <br />Tan. BeI. <br />. Dist. Dist. <br />Def• <br />if Dr <br />FE. <br />- <br />t. <br />ft. <br />fc. <br />ft.- <br />32° <br />151.39 <br />it. <br />ft: <br />tt, tt. <br />� 3° 58' <br />0'.10' <br />34377. <br />.036 <br />:145 <br />":241: <br />0.03 <br />7'. <br />.0 <br />819 <br />1.5 25 <br />6..105 1;3.21 <br />2.10 <br />20 <br />'17164 <br />.0 3 <br />.201 <br />.:2 <br />530.10 <br />153.58 <br />20' <br />751.8 <br />1.600 <br />C 95 12.7' <br />2.20 <br />3O <br />1145q.'.109 <br />2° 27'. <br />°436 <br />.873 <br />0.10 <br />30 <br />764.5 <br />1.637 <br />6.511) 13. G3 <br />2.25 <br />40 <br />8504 4 <br />.145 <br />.5S2 <br />1.10E <br />0.20 <br />40 <br />747.9 <br />1.073 <br />G%`5 13.37 <br />2.'0 <br />50 <br />6875 5' <br />.1S2 <br />.727 <br />1,:15.1 <br />0.2 5 <br />8 <br />716.5 <br />1.746 <br />: <br />1:06 13.95 <br />?.§0 <br />1 <br />47296 <br />.218 <br />.S73 <br />1.745 <br />0.30 <br />20 <br />638.2 <br />1.319 <br />7.236 11.53 <br />2.50 <br />10 <br />4011.2 <br />,255 <br />1.018 <br />2.03G <br />0.35 <br />30 <br />G74.7 <br />1.555 <br />7.411 1.1.92 <br />2.55 <br />20 <br />4297.3. <br />.291 <br />1.164 <br />2.327 <br />0.40, <br />40 <br />G61.7 <br />1.592 <br />7.556 15.11 <br />2.60 <br />00 <br />3219-8 <br />327 <br />1.309 <br />2.616 <br />0.45 <br />0 <br />G37.3 <br />1.965 <br />7.646 15.69'' <br />2.73 <br />40' <br />3437.9 <br />.'61I1.454 <br />2.909 <br />0150 <br />^0.614.6 <br />2.037 <br />8,136 16.27 <br />2.30 <br />50. <br />31257'- <br />40011.600 <br />3.200 <br />6.55 <br />:30 <br />GM.8 <br />2 -0rY <br />8,'2S1 16.56 <br />2.55 <br />2 <br />2864:9 <br />4745 <br />.." <br />1: <br />3.490 <br />0.60 <br />40 <br />:,03.4 <br />2.113 <br />5:426 6. S.5 <br />.00 <br />I0' <br />2044.G <br />.473 <br />1.091 <br />3:751 <br />0.65 <br />10 <br />5711.7 <br />2.133 <br />5.716 17.43 <br />3.00 <br />20 <br />2455.7 <br />-.509 <br />2.03E <br />4. -072 <br />0.70'," <br />30 <br />546.-4 <br />2.292 <br />9.180 1S. 2013.15 <br />30 <br />2292.0 <br />°545 <br />2181 <br />4.363 <br />0.75 <br />11 <br />52t.7 <br />2 A-0' <br />9.55.; 19.1:; <br />3.30 <br />40 <br />2145.8 <br />.5S2 <br />2.827 <br />4.654 <br />O.EO <br />30 <br /><<44.'1 <br />2.511 <br />10:02 20.0113.45 <br />50 <br />2022.4 <br />.615 <br />2,472 <br />4.045 <br />0.3:, <br />12 <br />479.:1 <br />3.620 <br />10.45 20.91 <br />3.G0 <br />3 .. <br />1910.1. <br />.655 <br />2:613 <br />5.235 <br />0.00 <br />30 <br />•59.3 <br />2.730 <br />i0, S� 21.- <br />3.75 <br />10 <br />1609.6 <br />.691 <br />"G3 <br />5.526 <br />0.95 <br />t3441.7 <br />2.839 <br />11.:1_ �C2.64 <br />3.40 <br />20- <br />1719.1 <br />.727 <br />2.603 <br />5.817 <br />1.00 <br />30 <br />425.4 <br />2.449 <br />11.75 (22.;1 <br />.0¢ <br />30::;1637.3 <br />.764 <br />3. 05.j <br />6.109 <br />1.0.6. <br />14 <br />•110.3 <br />3.0;8 <br />12.15 21.27 <br />4.20 <br />40 <br />1562.9 <br />".SOO <br />3.199 <br />6.308 <br />1.10 <br />3o <br />3;,6.2 <br />3.1113 <br />12.62 25.2.1 <br />4.35 <br />50" <br />1495.0 <br />.836 <br />3.345 <br />G. GSC) <br />1'.Lj <br />15 <br />353.1 <br />3.277 <br />13.05 26.11 <br />'1. 50 <br />4 <br />1432.7 <br />°-3 <br />3.490 <br />6.950 <br />t.20 <br />30 <br />370.8 <br />3.387 <br />13.19 26 07 <br />,4.65 <br />10 <br />1375.4 <br />.904 <br />3.633 <br />7:271 <br />1-.25 <br />1G <br />359.3 <br />.3.45" <br />13.92 `_`7.81'! <br />O <br />20 <br />1.322.5 <br />'.945 <br />3.710 <br />7.5G1 <br />1.30 <br />30 <br />345.°5 <br />3, (MG <br />11.35 28.70 <br />4.�5 <br />30 <br />1273.6 <br />.032 <br />.",.1)23 <br />7.952 <br />1.35_ <br />17 <br />33S-3 <br />3.716 <br />14.73 29.56 <br />.10 <br />40 <br />1223.1 <br />I.01S <br />4.671 <br />S. 143 <br />1.40 <br />1S <br />31'9.6 <br />3.925"'15.34 <br />31._o <br />5.40 <br />50 <br />1155.9 <br />1.055 <br />4.217 <br />5.433 <br />1.45 <br />19 <br />302-9 <br />•4.155.10,.51 <br />33.Oi <br />°.7o <br />b <br />1146..', <br />1.00I <br />4.362' <br />5,724 <br />1'.50 <br />RD <br />257.9 <br />4.37.1 <br />17.37 34.73 <br />6.00 <br />10' <br />1109.3 <br />1.127.4.507 <br />9'.01,1 <br />1.55 <br />21 <br />274.4 <br />4., 59-1 <br />15.22 3G. <br />G,30 <br />'20 <br />1074.7 <br />1.1;,4 <br />4.653 <br />9.305 <br />1,60 <br />212 <br />202'.0 <br />4.814 <br />19.05 3S.16 <br />6.00 <br />36 <br />1042.1 <br />17200 <br />4.795 <br />9.596 <br />1.65 <br />23 <br />250.8 <br />5.035 <br />;19.94 :'4.S7 <br />G.90 <br />40 <br />1011 ; <br />1.237 <br />4.9-13 <br />4, SSO <br />1.70 <br />24 <br />249.5 <br />5 255 <br />20.70. 41.:;217 <br />.20 <br />50 <br />982 6 <br />1.273 <br />5.0SS <br />'10.15. <br />1.75, <br />25 <br />231.0 <br />5.576 <br />1 64 43.2 <br />97.50 <br />G <br />9 a.,f <br />1309 <br />5.234 <br />10.47 <br />1.891 <br />26 <br />232.3 <br />5.697 <br />22.57 11.40 <br />7.SO <br />TO <br />•,929.6 <br />1.346 <br />5•.379 <br />'0.76.-1.85 <br />21 <br />21.1.2 <br />.5.018 <br />23. S5 "5:0 <br />3'.";0 <br />=- 20 <br />005.4 <br />1.352 <br />5.524 <br />11.05 <br />1.90• <br />':8. <br />20G.7 <br />6.130 <br />24.14 <br />8.40 <br />30 <br />981-9 <br />1°418 <br />5.669 <br />11.34' <br />1.95 <br />29 <br />199.716.300 <br />25.04 50-0713.70 <br />40 <br />559.9 <br />1.450 <br />5.514 <br />11.63 <br />12.00 1 <br />30 <br />1 I93.2 <br />6:563 <br />25.55 51.7319.00 <br />The twiddle orcin to is inches for cord of leug6h (C) is equal to.001'2 G' <br />multiplied by tho middlo ordinate taken from the above table. 'ihi:s. if it <br />desired to bend a 30 ft. rail to fita. 10 degree curve, its micicile.ordinat0 sl'ould <br />be .U012X9U0X2.183 or 2°36 inches. - <br />TABLE .ITT, Deflections for Sub Chords for Short Radius Curves. <br />Degree . <br />of <br />Curve <br />Radius <br />50 <br />sub chord <br />R =sin of z def. a_agle <br />Len,Ea <br />of arc <br />� for Ivo ft. <br />sin.I def. ang.12.5• <br />Ft. <br />45 1 t. <br />ZD Fc. <br />25 Ft. <br />•30° <br />193: i8_ <br />1°;5:1-, <br />-1° <br />_° 17, <br />2° 58, <br />3'_43' <br />1ol.13 <br />32° <br />151.39 <br />59 <br />2°'25' <br />3° lo' <br />� 3° 58' <br />101.33 <br />34° <br />171.01 <br />2° 06' <br />'° 33' <br />3° 71' <br />° 12' <br />IOI.48 <br />360 1 <br />16.1- So . <br />20 13' <br />° 41' <br />3° 33' <br />4° 26' <br />lot, 66 <br />3$° <br />153.58 <br />2° 20' <br />2° 49'3° <br />44` <br />4° 40' <br />toI.85 <br />40° <br />146.19 <br />2° 27'. <br />2° 5T <br />3° 55` <br />4° 54' <br />ro2.06 <br />42° <br />- 139.52 <br />2° 34' <br />3° 05` <br />4° 07` <br />5° 08 <br />102.29 <br />44° <br />133.47 <br />"° 4t' <br />3° 13' <br />4° z$' <br />S° 2_+ <br />102.53 <br />46° <br />127°97 <br />2° 48 <br />3° 21'.' <br />4° 29' <br />56 3G' <br />102.76 <br />4$° <br />122.92 <br />2° 5-1 <br />3° 29+ <br />4° 40' <br />S° 5�' <br />103.00 <br />50° <br />168.31 <br />3° 02,` <br />3° 38' <br />4° 51' <br />6° 04' <br />1o3.24 <br />52° <br />114.06.' <br />3° 09` <br />3° 46' <br />5° 02' <br />6° t7.' <br />103.54 <br />54° <br />IIo. I I <br />3° 16' <br />3° 54' <br />13 <br />6° 31 <br />103.84 <br />56° <br />to6.50 <br />.3° 2'-' <br />4° 0'--' <br />S° 23' <br />6° 44' <br />104.14 <br />58° <br />103.'14 <br />3° 29' - <br />.4° 10' <br />5° 34' <br />6° 57' <br />104.43 <br />600 <br />t00.o0 <br />3° 35' <br />4° is' <br />S° 44' <br />70 11'- <br />104-72 <br />IX <br />:'CURVE _ FORMULAS '.. <br />T = I2 tori I chord2 <br />R T cot. I <br />,I = �o.talt I 'Chard def. _.. R <br />_Sin. } D 50 <br />50 R Sin. a D I <br />Si.. 'r D. _ ' r - l IN o. chords = - <br />E = R. ex. sec I D <br />5o tan a. I 1 <br />E = T tan j I tan. def. = � chord def. <br />The square of 'any: distance, divided bi twice the radius; ' will equal <br />the distance from tangent to curve, very- nearly. <br />To -find angle for_a given distance and deflection. <br />Rule 1. - T,4ultiply the given distance by .61743. (clef. for z° for i ft: <br />see Table II.), and divide given -deflection_ by the product. <br />Rule 2. 17ultiply given deflection by 57.3; and divide the product by <br />toe given distance. <br />To ,find deflection for a given angle and distance. Multiply the angle <br />by °01745, and the product by the distance. <br />- GENERAL DATA <br />RiGaT A_,Tr _: TRIAKCLEs. Square the altitude, divide by ti ice the <br />base. Add quotient to base for hypotenuse. <br />Given Base ioo, Alt. ro.Io2=2oo=.5. 100=.5=100:5 hyp. <br />Given Ily-p. ioo, Alt:25.252-2oo=3°125. 100-3°125=96.375=Base: <br />Error in first example, .00--; in last, .045. <br />To find Tons of Rail in onc,mile of tracl.:• nwltip€y ,vcight ncr yard <br />by i t, and divide by 7. <br />LEVELIIG. The correction for curvature and refraction, hi .feet <br />ar.d decimals of feet•is equal to 0.574d2, where d is the distance in miles. <br />The correction for curvature alone is closely, 3,1;1. The combined cor- <br />rection is r-egative. w <br />PrcrAimn'ERROiZ. If d„ da, d,,;etc. are the discrepar-eies of v:: <br />