Laserfiche WebLink
CURVE TABLES. <br />Published by KEUFFEL & ESSER CO. <br />HOW TO USE CURVE TABLES. <br />Table I. contains Tangents and Externals to a 1° curve. Tan. and <br />East. to any otherradiusmay befoandnearly enough, by dividing theTan. <br />or Ext. opposite the given Central Angle by the given degree of curve. <br />To find Deg. of Curve, having the Central Angle and Tangent: <br />Divide Tan. opposite the given Central "Angle by the given Tangent. <br />To find Deg, of Curve, having the Central Angle and External: <br />Divide Ext. opposite the given Central Angle by the given External. <br />To find Nat. Tan. ar_d Nat. Ex. Sec. for any angle by Table L: Tan. <br />or -Ext. of twice the given angle divided by the radius of a 1' curve will <br />be the Nat. Tan, or Nat. Ex. Sec. <br />EXAMPLE. <br />Wanted a Curve with an Ext. of about 12 ft. Angl¢ <br />of .Intersection or 1. P.=23* 20' to the R. at Station <br />.542+72. <br />Ext. in Tab. I opposite 23° 20' =120.87 <br />120.87=12=10.07. Say a 10' Curve. <br />Tan. in `fab. I opp. 23° 20'=1183:1 <br />11$3.1 <br />10=118.31. <br />Correction for A. 23° 20' for a 10° Cur. =0.16 <br />118.31+0.16=118.47 —corrected Tangent. <br />(If corrected Ext. is required find in same way) <br />Ang. 23' 20'=23.33 =10=2.3333=L. C. <br />2° 192'=def. for ata. 542 1. P. =sta. 542+72 <br />4* 49'2'= n d c +50 Tan.= 1 .18.47 <br />7.1911= " " a 543 <br />9' 49,= « 50 B.C. =sta: 541+53.53 <br />11040' = u a 543 } L. C. = 2. 33.33 <br />86.86 E. C. =Stn. 543+86.86 <br />100-53.53=46.47X3'(def. for 1 ft: of 1.0° Cur.) =139.41'= <br />2' 192' =def. for sta. 1942. <br />Def. for 50 ft. =2° 30' for a 10° Curve'. <br />Def. for 36.86 ft. =1° 502' for a 10° Curve. <br />�J l� <br />J <br />ffs <br />,357-30 <br />ld <br />5 - <br />�4 <br />32 - z � <br />✓ � <br />—o a <br />,sem <br />6f <br />X90-10 <br />1-3o <br />5'V <br />6z <br />ry <br />NJ <br />fi. <br />CURVE TABLES. <br />Published by KEUFFEL & ESSER CO. <br />HOW TO USE CURVE TABLES. <br />Table I. contains Tangents and Externals to a 1° curve. Tan. and <br />East. to any otherradiusmay befoandnearly enough, by dividing theTan. <br />or Ext. opposite the given Central Angle by the given degree of curve. <br />To find Deg. of Curve, having the Central Angle and Tangent: <br />Divide Tan. opposite the given Central "Angle by the given Tangent. <br />To find Deg, of Curve, having the Central Angle and External: <br />Divide Ext. opposite the given Central Angle by the given External. <br />To find Nat. Tan. ar_d Nat. Ex. Sec. for any angle by Table L: Tan. <br />or -Ext. of twice the given angle divided by the radius of a 1' curve will <br />be the Nat. Tan, or Nat. Ex. Sec. <br />EXAMPLE. <br />Wanted a Curve with an Ext. of about 12 ft. Angl¢ <br />of .Intersection or 1. P.=23* 20' to the R. at Station <br />.542+72. <br />Ext. in Tab. I opposite 23° 20' =120.87 <br />120.87=12=10.07. Say a 10' Curve. <br />Tan. in `fab. I opp. 23° 20'=1183:1 <br />11$3.1 <br />10=118.31. <br />Correction for A. 23° 20' for a 10° Cur. =0.16 <br />118.31+0.16=118.47 —corrected Tangent. <br />(If corrected Ext. is required find in same way) <br />Ang. 23' 20'=23.33 =10=2.3333=L. C. <br />2° 192'=def. for ata. 542 1. P. =sta. 542+72 <br />4* 49'2'= n d c +50 Tan.= 1 .18.47 <br />7.1911= " " a 543 <br />9' 49,= « 50 B.C. =sta: 541+53.53 <br />11040' = u a 543 } L. C. = 2. 33.33 <br />86.86 E. C. =Stn. 543+86.86 <br />100-53.53=46.47X3'(def. for 1 ft: of 1.0° Cur.) =139.41'= <br />2' 192' =def. for sta. 1942. <br />Def. for 50 ft. =2° 30' for a 10° Curve'. <br />Def. for 36.86 ft. =1° 502' for a 10° Curve. <br />