Laserfiche WebLink
VIII <br />T"ix II. - Radii, Ordinates and Deflections. Chord =100 it. <br />Deg. • <br />132, ,Mid: <br />Ord. <br />Tan. <br />Dist, <br />Def. <br />Dista <br />Def. <br />for <br />1 Ft. <br />Des. <br />Ssdiva <br />Mid. <br />Ord. <br />Ten. <br />Dist. <br />Def. <br />t <br />Dist. <br />Def. <br />for ' <br />I Ft. <br />'° 17 <br />it.t. <br />3° 43` <br />t. <br />t. <br />' <br />1°59' <br />[t, <br />t <br />1t.. <br />ft. <br />340 <br />0'10' <br />34377. <br />.OUG <br />.145 <br />.291 <br />0.05 <br />7° <br />819.0 <br />1.528 <br />6.105 <br />12.21 <br />2.10 <br />20 <br />17189. <br />073 <br />.291 <br />.582.0.10- <br />44' <br />20' <br />781.8 <br />1.000 <br />6.395 <br />12.79 <br />2.29 <br />30 <br />11459. <br />.109 <br />.4n6 <br />.873 <br />0.15 <br />30 <br />764.5 <br />1.037 <br />6.540 <br />13.08 <br />2.25 <br />40 <br />8594.4 <br />'.145 <br />.582 <br />1.164 <br />0.20 <br />40 <br />747.9 <br />1.673 <br />6.685 <br />13.37 <br />2.30 <br />50 <br />1 6875.5 <br />.182 <br />..727 <br />1.454 <br />0.25 <br />8 <br />716.8 <br />1.745 <br />6.976 <br />13.95.2.40 <br />4° 5i` <br />1 <br />5729.6 <br />'.218 <br />:873 <br />1:745.0.30" <br />3° 46, <br />20 <br />638.2 <br />1.319 <br />7.266 <br />14.53 <br />2.50 <br />10 <br />4911.2 <br />.255 <br />1.018 <br />2.036 <br />0.35 <br />30 <br />674.7 <br />1.855 <br />7.411 <br />14.82 <br />2.55 <br />20 <br />4297.3 <br />.201 <br />1.164 <br />2.327 <br />0.40 <br />40 <br />601.7 <br />1.892 <br />7.556 <br />15.,11 <br />2.60 <br />30 <br />3819.8 <br />.327 <br />1.309 <br />2.61.8 <br />0:45 <br />9 <br />637.3 <br />1.965 <br />7.846 <br />15:69 <br />2.70 <br />40 <br />3437.9 <br />.364 <br />1.454 <br />2.909 <br />0.50 <br />20 <br />61.4.6 <br />2.037 <br />8.136 <br />16.27 <br />2.80 <br />50 <br />3125.4 <br />.400 <br />1.600 <br />3.200 <br />0.55 <br />.30 <br />603.8 <br />2.074 <br />8.281 <br />16.56 <br />2.85 <br />2 <br />2864.9 <br />.436 <br />1:745 <br />3.490 <br />0.60 <br />40 <br />593.4 <br />2.110 <br />8.4.26 <br />16. ET <br />'L.90 <br />10 <br />2644.6 <br />.473 <br />1.891 <br />3.781 <br />0.65 <br />10 • <br />573.7 <br />2.183 <br />8.716'17.43 <br />3.00 <br />20 <br />2455.7 <br />.509'2.030 <br />4.072 <br />0.70 <br />30 <br />546.4 <br />2.292 <br />9.150 <br />18.30 <br />3.15 <br />30 <br />2292.0 <br />.545 <br />2.181 <br />4.363 <br />0.75 <br />11 <br />521.7 <br />2.402 <br />9.585 <br />19.16 <br />3.30 <br />40 <br />2148.8 <br />.582 <br />2.327 <br />4.654 <br />0.80 <br />30 <br />499.1 <br />2.511 <br />10.03 <br />20.04 <br />3.45 <br />50 <br />2622.4 <br />.018 <br />2.472 <br />4.945 <br />0.85 <br />12 <br />478.3 <br />2.620 <br />10.45 <br />20.91 <br />3.60 <br />a <br />1910.1 <br />..655 <br />2.618 <br />5.`235 <br />0.90 <br />30 <br />439.3 <br />2.730 <br />10.89 <br />21.77 <br />3.75 <br />10 <br />1809.6 <br />'.691 <br />2.763 <br />5.526 <br />0.95 <br />18 <br />441.7 <br />2.839 <br />11.32 <br />22.64 <br />3.90 <br />20 <br />1719.1 <br />.727 <br />2,908 <br />5.81,7 <br />1.00 <br />30 <br />425.4 <br />2.949 <br />11.75 <br />23.51 <br />4.05 <br />30 <br />1837.3 <br />.704 <br />3.054 <br />6.103 <br />1.05 <br />14 <br />410.3 <br />3.058 <br />12.18 <br />24.37 <br />4.20 <br />40 <br />1562.9 <br />.800 <br />3.199 <br />6.393 <br />1.10 <br />30 <br />396.2 <br />3.168 <br />12.62 <br />25.24 <br />4.35 <br />GO <br />1495:0 <br />.830 <br />3.845 <br />6.689 <br />1.15 <br />15 <br />383:1 <br />3.277 <br />13.05 <br />26.11 <br />4.50 <br />4 <br />1432.7 <br />.873 <br />3.490 <br />6.980 <br />1.20 <br />30 <br />370.8 <br />3.387 <br />13.49 .26.97 <br />4.65 <br />10 <br />1375.4 <br />.909 <br />3.035 <br />7.271 <br />1.25 <br />10 <br />359.3 <br />3.496 <br />13.92. <br />27.84 <br />9.80 <br />20 <br />1322.5 <br />.945 <br />3.718 <br />7.561 <br />1:30 <br />30 <br />348.5 <br />3.606 <br />14.35 <br />28.70 <br />4.95 <br />30 <br />1273.0 <br />.982 <br />3.926 <br />7.852 <br />1.33 <br />17 <br />338.3 <br />3.716 <br />14.78 <br />29.56 <br />5.10 <br />40 <br />1228:1 <br />1.018 <br />4.071 <br />8.143 <br />1.40 <br />18 <br />319.6 <br />3.935 <br />15.64 <br />31.29 <br />5.40 <br />50 <br />1185.8 <br />1.055 <br />4.217 <br />8.433 <br />1.45 <br />19 <br />302.9 <br />4.155 <br />16.51 <br />33.01 <br />5.70 <br />5 <br />1140.3 <br />1.091 <br />4.362 <br />8.724 <br />1.50 <br />20 <br />287.9 <br />4.374 <br />17.37 <br />34.73 <br />G.DO <br />- 10 <br />1109.3 <br />1.127 <br />4.507 <br />9.014 <br />1.55 <br />21 <br />274.4 <br />4.594 <br />18.22 <br />36.44.6.30 <br />20 <br />1074.7 <br />1.164 <br />4.553 <br />9.305 <br />1'.60 <br />22 <br />262.0 <br />4.814 <br />19.08 <br />38.16 <br />6.60 <br />30 <br />1042.1 <br />1.200 <br />4.708. <br />9.696 <br />1.65 <br />23 <br />250.4 <br />5.035 <br />19.94 <br />39.87 <br />6.00 <br />40 <br />3011.5 <br />1.237 <br />4.943 <br />9.886 <br />1.70 <br />24 <br />240.5 <br />5.255 <br />20.79 <br />41.53 <br />7.20 <br />60 <br />.982,6 <br />1.273 <br />5.088 <br />10.18 <br />1..75 <br />25 <br />231.0 <br />5.476 <br />21,64 <br />'43.28 <br />7.50 <br />6 <br />935.4 <br />1.309 <br />5.234 <br />10.47 <br />1.80 <br />26 <br />222.3 <br />5.697 <br />22.50 <br />44.99 <br />7.80 <br />`10 <br />`,929.6 <br />1.346 <br />5.379.10.76 <br />1.8ci <br />27 <br />214.2 <br />5.918 <br />23.35 <br />0.69 <br />8.10 <br />20 <br />" 905.1 <br />1.382 <br />5.524 <br />11.05 <br />1.90 <br />28 <br />206.7 <br />6.199 <br />24.19 <br />48.38 <br />8.90 <br />30 <br />-881.9 <br />1.418 <br />5.669'11.34 <br />1.95 <br />29 <br />199.7 <br />6.360 <br />25.04 <br />50.07 <br />8.70 <br />40 <br />859.9 <br />1.466 <br />5.81411.63 <br />2.00 <br />1 SO. <br />193.2 <br />0.683 <br />26.88 <br />51.75 <br />9.00 <br />The middle ordinate in inches for any cord of length (C) is a nal to .0012 C' <br />multiplied by the middle ordinato. taken from the above table• Thug, if it <br />desired to bend a 30 ft, rail to fit 1.0 degree curve, its middle ordinate should <br />be .0012X90OX2.183 or 2.36 inches. <br />TABLE III Deflections for Sub Chords for Short Radius Curves. <br />Degree <br />of <br />Curve <br />Radius <br />`50R <br />A sub chord <br />= sin of i def. angle <br />of age <br />for 100 ft. <br />sia. z def. ails, <br />12.5 Ft. <br />15 Ft. <br />26 Ft. <br />25 Ft. <br />:6833 <br />.193.18. <br />1° 51` <br />'° 17 <br />2° 58 <br />3° 43` <br />101.15 <br />32° <br />181.39 <br />1°59' <br />2°25' <br />3°10' <br />3°58' <br />101,33 <br />340 <br />171.01 <br />2° o6' . <br />2° 33 <br />3° 21' <br />4. 12' <br />I0I.48 <br />36° <br />161.8o <br />2° 13' <br />2° 41' <br />3° 33' <br />4° 26' <br />161.66 <br />38°,.153.53 <br />1,5 <br />2° 20' <br />2° 49'3° <br />44' <br />4° 40''' <br />101.85 <br />40° <br />146. ig <br />2° 27' <br />2° 57' <br />• 37 55' <br />4° 54' <br />102.o6 <br />42° <br />139.52 <br />2° 34'3° <br />05' <br />4° 07' <br />S° 08' <br />102-29 <br />44° <br />133.47 <br />2° 41' <br />3° 13' <br />4° 18' <br />5° 22'• <br />102.53 <br />46" <br />-127-97- <br />20 48' <br />3° 21' <br />4° 29` <br />51 . 36' <br />102.76 <br />48° <br />122.92 <br />2° 55 <br />3° 2g' <br />4° 40` <br />5° 50' <br />103.00 <br />500 <br />118:31 <br />.3° 02' <br />3° 38' <br />4° 5i` <br />6° 04' <br />103.24 <br />52°. <br />114.o6 <br />31>0 91 <br />3° 46, <br />5° 02' <br />6° 17' <br />103.54 <br />54°. <br />11o.11 <br />3° 16' <br />3° 54' <br />5.'13 <br />6-31, <br />103.84 <br />56° <br />106'.50 <br />3° 22 <br />4° 02' <br />S° 23' <br />6° 44' <br />104. 14 <br />58' <br />103.14 <br />3° 29' <br />4° 10' <br />5034 <br />6° 47' <br />104.43 <br />600 <br />100.00 <br />3° 35 <br />4° 18 <br />5744 <br />7° 11' <br />104.']2 <br />IX <br />CURVE 'FORMULAS <br />T= R tan Q I R= T cot. 1. I chord2 <br />_ 5o tan I Chord def. = R <br />T Sin. D. R 60 <br />Sin. J D '= 50 Stn. 2 D. . -,No. chords = I <br />R E= Res. scc z 1 D <br />_ tan I <br />. Sin. � D - 5o ,I, P: = T tea J I Tan. def. chord def. <br />The.square of any distance, divided by twice t.:e radius, will equal <br />the distance from tangent to curve, very nearly. <br />To find angle for a given.distance and deflection. <br />Rule J. Nlultiply the given distance by ,01745 (def. for L° for 1 ft. <br />see Table If.), and divide given deflection by the product. . <br />Rule 2. Multiply given deflection by 57.3; and divide the product by <br />the given 'distance. <br />To find deflection for a given angle and distance. Multiply'the angle <br />by •01745, and the product by the distance. <br />GENERAL DATA <br />RIGHT ANGLE TRIANGLES. Square the altitude, divide`by twice the <br />base. Add quotient to base for hypotenuse. <br />Given Base 10o,Alt. Lo.io2-* 2oo=.5. loo+.5=1oo.5 hyp. <br />Given Hyp. loo, Alt. 25.252=200=3.125.100 3.125=96.875=Base. <br />Error in first example, ,cot; in last, .oq.5. <br />To find Tons of Rail in one mile of trach: multiply v;cight per yard <br />by ii, and divide by 7. <br />LEVELING. The correction for curvature and refraction, in feet <br />and decimals of feet is equal to 0.874 da, where d is the distance in miles. <br />The correction for curvature alone is closely, �d2. The combined cor- <br />rection is negative. <br />PROBABLE ERROR. If d1, d„ da, etc. are the discrepancies of various <br />results from the mean, and if Md the sum of the squares bf these differ- <br />ences and n=the number of observations, then the probable error of the <br />s <br />mean= -I- 6.6745 <br />SOLAR EPIIFMERLS: Attention is called to the Solar Ephemeris for <br />the current year, published by Keu(Iel & Esser Co., and furnished free of <br />charge upon request, wl11c11 is 3aa,5g in., with about 90 pages of data very' <br />useful to the Surveyor; such as the adjustments of transits, levels and <br />solar attachments; directions and tables for determining the meridian. <br />and the latitude from observations on the sun and Polaris; stadia meas- <br />urements; magnetic declination; arithmetic constants; English and Metric <br />conversions; trigonometric formulas; Natural andLogarithmic Functions; <br />and Logarithms of Numbers. <br />it TABLE IV. - Minutes in Dreimsle of s DRPFP.f . <br />1' <br />.0167 <br />11' <br />.1833 <br />21' <br />.3500 <br />31' <br />.5167 <br />41' <br />:6833 <br />51' <br />Swo <br />2 <br />.0333 <br />12.2000 <br />22 <br />.3667 <br />32 <br />.5333 <br />t2 <br />.7000 <br />52 <br />.8667 <br />3 <br />.0500 <br />13 <br />.2167 <br />23 <br />.3833 <br />33 <br />.5500 <br />t3 <br />.7167 <br />53 ' <br />.8833 <br />4 <br />.0667 <br />1,5 <br />.2333 <br />24 <br />.4000 <br />34 <br />.5667 <br />#4 <br />.7333 <br />54 <br />.9000 <br />5 <br />.0333 <br />15 <br />.2500 <br />25 <br />.4167 <br />35 <br />.5333 <br />45 <br />.7500 <br />55 <br />.9167 <br />6 <br />.1000 <br />IG <br />.2667 <br />24 <br />.4333 <br />26 <br />.0900 <br />40 <br />.7667 <br />50 <br />.9333 <br />7 <br />.1167 <br />17 <br />.2533 <br />27 <br />.4500 <br />37 <br />.0167 <br />47 <br />.7833 <br />57 <br />.9500 <br />8 <br />.1333 <br />13 <br />.3000 <br />28 <br />.4067 <br />38 <br />G333 <br />48 <br />WN <br />58 <br />.9667 <br />9 <br />.1500 <br />19 <br />.3167 <br />29 <br />.4833 <br />" <br />.6500 <br />40 <br />"167 <br />59 <br />.9833 <br />10 <br />.IG67 11 <br />_ <br />203 <br />1 .3333 11 <br />20 <br />1 .5000 <br />11 49 - <br />,5667 <br />50 <br />.8333 11 <br />60 <br />1.0000 <br />TABLE V. - Inches in Decimals of a Foot. <br />1-10 5-32 3 -LG 5 -IG J 71 <br />.0052 .0078 .0104 .0150 .0208 .0260 .0313 '.0117 .0521 .0625 .0729 <br />1 2 3. 4 5 fi 7 8 9 10 11 <br />.0833 .1667 .2.5 .3333 .4167 .5000 .5833 6667 ..7500 .8333 .9167 <br />