Laserfiche WebLink
I.Wlq.flee,y- <br />1ZCl <br />"c <br />1 . TRIGONOMETRIC FORMULtE 1 6 , o <br />L ''f{CAA b\ C A b C <br />Right TfiiiEiAbe Oblique Triangles I <br />Solution of Right Triangles <br />For Angle A. 'sin — a , cos= —,tan= b , cot= a, see = b, cosec = a <br />Given Re Qirire'd <br />a, b -11 B ,c tan Ab' = cot B. c = y/a= + b= = a ; Y <br />a <br />a, c. sinA=�-c �I,g=4� G+ )(--a)=c�1—E <br />a <br />f i A, a B, b, c B=90°—A, b= a cotA, e= <br />gin A. <br />Lt <br />A, b B, a, c B=90'—A, a = b tan A, c = b <br />Cos A. - -I <br />A, c B, a, b B=90°—A, a = csinA, b= ccosA, <br />Solution of Oblique Triangles <br />Given Required a sin B a sin C <br />A, B, a ,h, o, Cb — sin A ' C = 180°—(A + B), c = sin A <br />b sin A a sin C <br />B, c, C sin B=a , C = 180°—(A -l• B), e, = sin A ' . <br />(a—b} <br />a, b, C A; B, c. �1-f-B=180°-C, tan :', tan '- (A+B•)(A—B)= a + b , <br />II asin C <br />o= <br />sin A <br />( a, b, e A, B, C a=a-f-a+c,sin'A—lg~ <br />2 be <br />g.I sin <br />t I, <br />a+b+c <br />ccs, 6, a Area, B = 2 <br />f1' bcsin A <br />A, -h c= .Area' area = 1 <br />a'- sin B sin C <br />A, B,C,a .,Area area = <br />, 2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance= Slope distance multiplied by the <br />cosineofthevertical angle. Thus: slope distance=319.4ft. <br />w°e Vert. angle =6' 101. From Table, Page IX. cos 5° lW= <br />e''� �9959. Horizontal distance=319.4X.9959=318.08 ft. <br />1 <br />1 'De Pnq\e . , Horizontal.distance also= Slope distance minus slope <br />distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 5°10'=.9959. 1—.9959=.0041. <br />319.4X.0041=1.31. 319.4-1.31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft, <br />slope distance=302.6 ft, Horizontal distance=3026= 14 X 14 =3026-0==3a28ft. <br />2 X 502.6 <br />4 - MAGE IN U. B•. Ib r <br />i <br />15 33�� <br />e: _ <br />7 � <br />X17 <br />r <br />HI <br />J. <br />VV <br />IV <br />I.Wlq.flee,y- <br />1ZCl <br />"c <br />1 . TRIGONOMETRIC FORMULtE 1 6 , o <br />L ''f{CAA b\ C A b C <br />Right TfiiiEiAbe Oblique Triangles I <br />Solution of Right Triangles <br />For Angle A. 'sin — a , cos= —,tan= b , cot= a, see = b, cosec = a <br />Given Re Qirire'd <br />a, b -11 B ,c tan Ab' = cot B. c = y/a= + b= = a ; Y <br />a <br />a, c. sinA=�-c �I,g=4� G+ )(--a)=c�1—E <br />a <br />f i A, a B, b, c B=90°—A, b= a cotA, e= <br />gin A. <br />Lt <br />A, b B, a, c B=90'—A, a = b tan A, c = b <br />Cos A. - -I <br />A, c B, a, b B=90°—A, a = csinA, b= ccosA, <br />Solution of Oblique Triangles <br />Given Required a sin B a sin C <br />A, B, a ,h, o, Cb — sin A ' C = 180°—(A + B), c = sin A <br />b sin A a sin C <br />B, c, C sin B=a , C = 180°—(A -l• B), e, = sin A ' . <br />(a—b} <br />a, b, C A; B, c. �1-f-B=180°-C, tan :', tan '- (A+B•)(A—B)= a + b , <br />II asin C <br />o= <br />sin A <br />( a, b, e A, B, C a=a-f-a+c,sin'A—lg~ <br />2 be <br />g.I sin <br />t I, <br />a+b+c <br />ccs, 6, a Area, B = 2 <br />f1' bcsin A <br />A, -h c= .Area' area = 1 <br />a'- sin B sin C <br />A, B,C,a .,Area area = <br />, 2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance= Slope distance multiplied by the <br />cosineofthevertical angle. Thus: slope distance=319.4ft. <br />w°e Vert. angle =6' 101. From Table, Page IX. cos 5° lW= <br />e''� �9959. Horizontal distance=319.4X.9959=318.08 ft. <br />1 <br />1 'De Pnq\e . , Horizontal.distance also= Slope distance minus slope <br />distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 5°10'=.9959. 1—.9959=.0041. <br />319.4X.0041=1.31. 319.4-1.31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft, <br />slope distance=302.6 ft, Horizontal distance=3026= 14 X 14 =3026-0==3a28ft. <br />2 X 502.6 <br />4 - MAGE IN U. B•. Ib r <br />