Laserfiche WebLink
TRIGONOMETRIC FORMUL:E �-Z <br />�+�� .4-9 1) !� •�7 1�9, 7� -�_ 33 _ � �._¢_ Wil• ,��<�. <br />�_ 3 `'' lZ e - [•5 a c `b 5 a c 1 .9 ..,a <br />,e�73 3`2 I 47,12 %?Z �Z �_�, la, ybt�33- A <br />1Z.1� t J� J .b .'r GY b C b �'i. <br />3 . 1 U '- Right Triangle . Oblique Triangles <br />Solution of Right Triangles b <br />+-7 �• J 9 Q �� .g' For Angle A. sin = c ,cos = c ,tan = b cot = a ,sec = b , cosec = <br />I137a <br />�� _ (c• �y p ca �q - Given Required ` <br />[•5 .p - �} ! j .: :, a, b .1, Z1 L,c tan _�. = L =cot Ii c= 1/a=' T b2 = a 1 a <br />a2 <br />a, c A, B, b sin =cosB,b=�/(c Fa)(c-a) =c 1-az <br />,l <br />Z A, a B, b, c B=90°-A, b = a cot q, c- <br />I l 'AZ <br />�f 6 _31 <br />sin .9. <br />r ---7773 b <br />I 5 �tc' ��3 �J A,b B,a, c 8=90°—A,a=btan.l,c= <br />cos A. <br />% A,c B, a; l+ B-90°—A,a=csin 11,b-ccos A, 1-2 7. <br />3 <br />Solution of Oblique Triangles- <br />Given Required a• sin •B a sin C �r <br />'B, .B, a. b, c, C b = G = 180°—(-3 } B) c = <br />sin A s:n A 15 4 3 r <br />:y fe .. -- + b sin A ° a sin C <br />41�-�� ' a, b B, c, C sin I3= a C = 180'-(A I B), <br />.. 1 r •J -D - `' ' a-b) tan ' (A+B) <br />jg' (•.70 , 7' a, b, G A, B, c A �B=180 tang 4-13)= a + b <br />q v , <br />1ST 06�a <br />—_2 U / 1 Xr�f 2-a.? c r,� <br />sin 3 _�•,rY3 4Z.C5� <br />2 ` Q , <br />b c A, B, C s = . 2 qn''-•_4=1 b c `>' 3(•sfig= j("-all''-c) C=180°-(A+B) <br />—'��•Z 10 `t 1 �S� ' C C� a c <br />iy •�, ii'- a, b, c Areas-rrT2+c area <br />l- !L9,bcsinA <br />A,b,c Area <br />+ _ a a•'-sinBsinC 4z•o <br />3 ; 3 � 1.72 1 % 5 � • Z • 3 , 9, B, C, a Area arca = <br />17 S -5-�o 4 l 2sin A 5F � <br />REDUCTION TO HORIZONTAL <br />�• ht: �1 Horizontal distance= Slope distance multiplied by the <br />I d � ' )-f , ce cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />Z r~ I { •s ,,�' r % baa Vert. anglb=5° IV.. From Table, Page IX. cos 50 101= <br />'7 4 c i1 ti 9959. Horizontal distance=319.4X.9959=318-09 ft. <br />3 c�,o a i --�_�- • slop ��1e Horizontal distance also=Slope distance minus slope <br />7d y0, o ' �` �. A distance times (I-c ine of vertical angle)• With the <br />I- - { 3 •,,y 1` - ', c ( �� 1 q, /� yep same figures as in the preceding example, the follow- <br />�� <br />Horizontal distance <br />z7 a C Z- ing result is obtained. Cosine 50 101=.9959.1-.9969=.0041. <br />l - 1 <br />319.4X.0011=1.31. 319.4-1.31=318.09 ft. <br />When the rise is known, the horizontal distance is approximately:-the slope dist-* <br />y ante less the square of the rise divided by twice the slope distance. Thus: rase=14 ft., <br />_ <br />• � y a Z; � • � - _ - `'� .. / J l� slope distance=302.6'ft. Horizontal distance=3026- 74 X 14 -302.6--0.32=302.28 <br />ft-2 X 302.6 <br />n MADE IN U. B.A. <br />