Laserfiche WebLink
1 <br />=a_ <br />- <br />�13313.�Z <br />3 -7`F 5 3 8 ?I <br />^r i -rpt, <br />T33 4 <br />Y- <br />1-J ' Z <br />l 8o, <br />21. <br />`ice <br />�� <br />'• <br />v <br />T 1 So.7S <br />�- <br />1 <br />=a_ <br />- <br />�13313.�Z <br />3 -7`F 5 3 8 ?I <br />-- <br />1-J ' Z <br />l 8o, <br />a <br />TRIGONOMETRIC FORMUL,,Eu--_.:_ — 4 <br />B B B <br />zc a ° a ° a <br />Ott ' A A <br />b C b G' G A C <br />Right Triangle Oblique Triangles <br />? Solution of Right Triangles <br />a b a b c c <br />For Angle A. sin = c , cos + c , tan= b , cot = a , sec = �, cosec = a <br />Given Required a <br />z <br />1 <br />a,b A,B,c tan A=b=cotB,c=voT-Y,=a 1+ a! <br />• . a - <br />a, c A, B, b sin A = o = cos B, b = \/ (c+a) (c—a) =c 1—as s <br />0 <br />l A, a B, b, c B= 90'—A, b= a cot A, c= a <br />sin A. <br />b <br />a c B= 90°—A, a= b tan A, e= <br />cos A. <br />A, c B, a, 'b B=90°—A, a = csinA, b= e cos A, <br />JSolution of Oblique Triangles <br />Given Required. a sin Ba sin C <br />A, B; a-• _b,. c, C b = sin A ' C = 180°—(A + B), c = sin A <br />b sin A a sin C - <br />A, a, b B, c, C sin B = a , C = 180°—(A -I- B), c = sin A <br />a, b,, C. .4, B, c A+B=180'— C, tan' (A—B)= (a—b) tan' (A+B) <br />a sin C <br />c= <br />sin A <br />a, b, cJ A,B,C s=a+2+c,sin'A—.(c—c <br />sin�B= AI(,—a)(- ` , C=180'—(A+B) <br />i'a, b, c Area s=a+2+c> area., =.1 s(s—a s—')(s—c)- <br />C'j , <br />A, b, c' -Area area = b c sin °_ yy,32. <br />a= sin B sin 0 5,19 <br />A, B, C, a Area area = 2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance= Slope distance multiplied by the <br />cosine of the vertical angle. Thus: slope distance =310.4 ft. <br />t3o°c Vert. angle= 50 101. From Table, Page IX. cos 50 lot= <br />e ass N 9959. Horizontal distance=319.4X.9959=318.09 ft <br />5%op' tie Horizontal distance also=Slane distance minus slope <br />distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow- <br />ing result is obtained. Cosine 5°101=.9959.1—.9959=.0041. <br />319.4X.0041=1.31. 319.4-1.31=818.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft., <br />— <br />slope distance=302.0 ft horizontal distance=3026— 14 X 14 —3026-0.32=80228Yt. <br />2 X 802.6 <br />/ NADA IN Ut6sA. <br />rA <br />6 b 7 <br />=a_ <br />- <br />�13313.�Z <br />3 -7`F 5 3 8 ?I <br />TRIGONOMETRIC FORMUL,,Eu--_.:_ — 4 <br />B B B <br />zc a ° a ° a <br />Ott ' A A <br />b C b G' G A C <br />Right Triangle Oblique Triangles <br />? Solution of Right Triangles <br />a b a b c c <br />For Angle A. sin = c , cos + c , tan= b , cot = a , sec = �, cosec = a <br />Given Required a <br />z <br />1 <br />a,b A,B,c tan A=b=cotB,c=voT-Y,=a 1+ a! <br />• . a - <br />a, c A, B, b sin A = o = cos B, b = \/ (c+a) (c—a) =c 1—as s <br />0 <br />l A, a B, b, c B= 90'—A, b= a cot A, c= a <br />sin A. <br />b <br />a c B= 90°—A, a= b tan A, e= <br />cos A. <br />A, c B, a, 'b B=90°—A, a = csinA, b= e cos A, <br />JSolution of Oblique Triangles <br />Given Required. a sin Ba sin C <br />A, B; a-• _b,. c, C b = sin A ' C = 180°—(A + B), c = sin A <br />b sin A a sin C - <br />A, a, b B, c, C sin B = a , C = 180°—(A -I- B), c = sin A <br />a, b,, C. .4, B, c A+B=180'— C, tan' (A—B)= (a—b) tan' (A+B) <br />a sin C <br />c= <br />sin A <br />a, b, cJ A,B,C s=a+2+c,sin'A—.(c—c <br />sin�B= AI(,—a)(- ` , C=180'—(A+B) <br />i'a, b, c Area s=a+2+c> area., =.1 s(s—a s—')(s—c)- <br />C'j , <br />A, b, c' -Area area = b c sin °_ yy,32. <br />a= sin B sin 0 5,19 <br />A, B, C, a Area area = 2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance= Slope distance multiplied by the <br />cosine of the vertical angle. Thus: slope distance =310.4 ft. <br />t3o°c Vert. angle= 50 101. From Table, Page IX. cos 50 lot= <br />e ass N 9959. Horizontal distance=319.4X.9959=318.09 ft <br />5%op' tie Horizontal distance also=Slane distance minus slope <br />distance times (1—cosine of vertical angle). With the <br />same figures as in the preceding example, the follow- <br />ing result is obtained. Cosine 5°101=.9959.1—.9959=.0041. <br />319.4X.0041=1.31. 319.4-1.31=818.09 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft., <br />— <br />slope distance=302.0 ft horizontal distance=3026— 14 X 14 —3026-0.32=80228Yt. <br />2 X 802.6 <br />/ NADA IN Ut6sA. <br />rA <br />6 b 7 <br />