Laserfiche WebLink
7Y' I'7 <br />.t <br />'TRI, <br />METRIC FORMULF- <br />x ,. <br />C <br />A A <br />b a AI �� �Gb1i ,;r a b <br />Right Triangle �*. Oblique Triangles ` _ << <br />Solution of Right Triangles - <br />a b�•- a& 1 b c b <br />For Angle A. sin = c , cos= c ,`tan= b ,cot = a , sec = b, cosec = <br />a <br />Given Required a t <br />a,b A,B,c tail A=b= cot B,c= a F -a 1+a <br />z <br />a, c A, B, b sin A = = cos B, b = \/ (c -{-a (c -a) = c 1- v2 <br />'A, a B; b, c B = 90°-A ,, b = a COt.'i, e = a <br />sin A. <br />A, b B, a, c B = 900-A, a = b tan A, c = cos A. <br />A,c B, a, b I B=90°-A,a=csin A,b=ccos A, <br />Solution of Oblique Triangles / r <br />9 Given Required _ a sin .l; t <br />A, B, a b, c, C b sin A ' G = T80° -(A } B), c a sin C <br />= sin A <br />�i72 1610 00 coo <br />b sin A a sin C <br />A, a, b .77, el'C sin B= a ,C= 180°-(A + B), c'= sin A <br />a Bio'o ° (a -b) tan (A+171) <br />b, C A, B, c .:1 �.8=180 - G, tan (A -B)= tL , <br />i -a C <br />......r a sin C + <br />1.054 .72537 c - sin A <br />1.048 .72337. <br />1.042 .72136 i a -1-b -}-G <br />1 .036 .7193441 <br />a, b, c A,B,C s= 2 Sin 71A= <br />1.030 .71732 <br />1.024.71529sin iB- <br />-A B <br />, 180°�' -F <br />C ) <br />1.018 .71325 -� ` a c <br />20 .u92a .73551,24131.b.,b 1.eou .buooa su -.+u .°oa_ :__.._ _-.._., <br />%;30.5048.740 1,2440 1.681 1.351 .80386 30 30:1884.94901.37861 <br />40:597..74451.24661.6751.343.50212 20 40 .6905 U545 1,3824 <br />56 .5905 .7490 1.2494 1.663 1.335 .80038 10 50 . G926 .9601 1.3563 t <br />37 6013 75361 2521 1 662 1 327 .70564 53 44 .6947 .9657 1.3902 1 <br />.7030 .9884 1.406111,:4922�1.012�.7112 <br />.7050 .999 2 1.4101 418 1.000 .7091 <br />.7071 1. 1.414 1.414 1. .7071 <br />Cosin. Cotg. Cosec. -Sea Tan. Sin. <br />5 is <br />r <br />I/ 5E, r <br />t a+b+c <br />6 a, b, c. Area s = 2 , area = y7.s(s-a (s - b) (s -c) <br />t45 >✓ c <br />� i A, b, c Area area besin -4. t <br />= 2 ;' v• <br />az sin Bsin C • S <br />A, B, C,, Area arca = <br />0 2 sin A f✓ ;' <br />REDUCTION TO HORIZONTAL <br />IIorizontal distance = Slope distance tinultiplied by the <br />Angle;`�s cosine of the vertical angle. Thus: sIope distance =319.4 it. <br />Vert. angle =5° 101. From Table, Page IX. cos 5° ]0Y= <br />N9959. Horizontal distance=319.4X.9959=318.09 ft <br />gloQc e Horizontal distance also -Slope distance minus slope <br />distance times (1 -cosine of vertical angle). With the <br />deb same figures as in the preceding example, the follow - <br />Horizontal distance Ing result is obtained. Cosine 51 10'=.9959.1-.9869=.0041. <br />319.4X.0041=1.31. 319.4-1.31=318.09 ft. <br />i When the rise is known, the horizontal distance is approximately: -the slope dist- <br />nee less:the square of the rise divided by twice the slope distance. Thus: rise=l4 ft., <br />ope distance=302.6 ft. Horizontal distance=302.6-1 XX30IB 8=302,6-0.32=802.28 ft. <br />MADE IN U7E. A. <br />1 � <br />10.6041.75811.25491.6.351.319.79OS8 <br />50 <br />10 <br />20.6065.76271.25771.6491.311.79512 <br />40 <br />20 <br />30 .GOBS .7G73 1.2G05 1.643 1.303 .79335 <br />30 <br />30 <br />40 .6111 .7720 1.2633 1.636 1.295 .79158 <br />20 <br />40 <br />50 .6134 .7766 t.2661 1.630 1.288 .78950 <br />10 <br />50 <br />y <br />38 .6157 .7,913 1,2690 1.624 1.280 .78SO1 52 <br />10 .6180 .786C 1.2719 1.618 1.272 .78622 <br />50 <br />._ . <br />20 .6202 .7907 1.2748 1.612 1.265 :75442 <br />.40 <br />30.6225.79541.27781.6061.257.75261 <br />.30 <br />p <br />40 .6243 .8002 L28031.G01 1.250 .75079 <br />20 <br />50 .6271 .8050 1.2833 1.595 1.242 .77897 <br />10 <br />Cosin. Cotg. Cosec. Sec. Tan. Sin. Angle <br />.7030 .9884 1.406111,:4922�1.012�.7112 <br />.7050 .999 2 1.4101 418 1.000 .7091 <br />.7071 1. 1.414 1.414 1. .7071 <br />Cosin. Cotg. Cosec. -Sea Tan. Sin. <br />5 is <br />r <br />I/ 5E, r <br />t a+b+c <br />6 a, b, c. Area s = 2 , area = y7.s(s-a (s - b) (s -c) <br />t45 >✓ c <br />� i A, b, c Area area besin -4. t <br />= 2 ;' v• <br />az sin Bsin C • S <br />A, B, C,, Area arca = <br />0 2 sin A f✓ ;' <br />REDUCTION TO HORIZONTAL <br />IIorizontal distance = Slope distance tinultiplied by the <br />Angle;`�s cosine of the vertical angle. Thus: sIope distance =319.4 it. <br />Vert. angle =5° 101. From Table, Page IX. cos 5° ]0Y= <br />N9959. Horizontal distance=319.4X.9959=318.09 ft <br />gloQc e Horizontal distance also -Slope distance minus slope <br />distance times (1 -cosine of vertical angle). With the <br />deb same figures as in the preceding example, the follow - <br />Horizontal distance Ing result is obtained. Cosine 51 10'=.9959.1-.9869=.0041. <br />319.4X.0041=1.31. 319.4-1.31=318.09 ft. <br />i When the rise is known, the horizontal distance is approximately: -the slope dist- <br />nee less:the square of the rise divided by twice the slope distance. Thus: rise=l4 ft., <br />ope distance=302.6 ft. Horizontal distance=302.6-1 XX30IB 8=302,6-0.32=802.28 ft. <br />MADE IN U7E. A. <br />1 � <br />