Laserfiche WebLink
TRIGONOMETRIC FORh1UL1E <br />B <br />a c a e a <br />•-A,=-.: b C A^ b C A b C <br />-- �j � 1 � - <br />Right Triangle Oblique Wangles <br />Right Triangles <br />So.lutiori''of <br />b b <br />r <br />_ <br />2 a c c <br />For Angle A. sin = cos= , tan= , cot = a. sec = b, cosec = <br />c c a <br />- -- - <br />Giben <br />a,b <br />Required <br />A,'B,c <br />tanA==cotB,c= of �' =a --F <br />b `+ 1+.22 <br />_ <br />s. 34/3' <br />A, B, b <br />sin A = a . cos B, b = `/ (c -{-a) (c—a) = c 1— o' <br />A, a <br />B, b, c <br />B = 90°—A, b = 2 cot A, c = 2 <br />sin A. <br />F <br />- <br />A, b <br />B, a, c <br />B =90'—A, a = b tan A, e = b <br />cos A. <br />o <br />A, e- <br />B, a, b <br />B =90'—.A, a = c sin A, b = e cos A, <br />r <br />a <br />Solution of Oblique Triangles <br />�. r..�i <br />Given <br />A, B, a' <br />Required <br />b, c' C <br />_ asinB asin C <br />b <br />' C = 180°—('�L-+ B). c = <br />sin A sin A .. <br />i ' m'`` 3�: f�. <br />_ <br />A, a, b <br />B, c, C <br />b sin A cc sin C <br />sin B = C = 1fi0°—(A i- B), c = <br />,. <br />a , sin A <br />a, b, C., <br />A, B, c <br />A-f B=180°=C, tani(fr~B)=((r-b)tan (!l+B) <br />a + b <br />C <br />Sim A <br />a, b, c <br />A, B, C <br />a+b+c <br />s= sin''-,A= <br />2 8 c <br />sinkf1="')"8c) C=180°—(A+B) <br />. <br />.. <br />o <br />a, b, c <br />Area <br />a+b+c <br />s= 2 ,arca = y s(a—a s—b) (•,—c) <br />- y <br />A, b- e. <br />-Ar . ea <br />area = b c sin A <br />2 <br />a2 sin B sin C /+ <br />. <br />A, B,,C, a <br />Area <br />area-- <br />2 sin A <br />} REDUCTION TO HORIZONTAL <br />Horizontal distance= Slope distance multiplied by the <br />St¢ooe <br />cosine of the vertical angle. Thus: slope distance =319.4 fL <br />Vert. angle=5° IOC Froin "Table. Page IX. cos 61101= <br />e <br />c+ 9959. Horizontal distancs,319.4X.9959=315.09 ft. <br />So �9t <br />distance timest(lccosi c' f ertcalA,nvie).1Withltnus he <br />same figures as in the prex:eding example, the follow- <br />Horizontal distance inresult is obtained. Cosine 5°10'=.9959.1—.9959=.0041. <br />310.4X.0041=1.31. 319.4-1.1'c1=318.09 ft. <br />When the rise is known, the horizontal distance is aFiproximately:—the slope dist- <br />' <br />- ance.less the square of the rise divided by twice the slope distance. Thus: rise=14 ft., <br />slope distance=3026 ft. ' Horizontal distance=302.6— 14 X 1414 =3016-0.32=302.28 ft. <br />--• <br />2 X 3)2.6 <br />�.i <br />MADE IN UA, <br />