Laserfiche WebLink
�,�q <br />VIII <br />TA131M II. - Radii, Ordinates and. Deflections. Chord =100 ft. <br />Deg. - <br />Radius <br />Slid. <br />Ord. <br />Tan. <br />Dist. <br />Def, <br />Dist. <br />Def. <br />' lfor <br />Deg. '. <br />Radius <br />h1id. <br />Ord. <br />Tan. <br />Dist. <br />Def. <br />Det. <br />Def. <br />- Ft. <br />3° 10' <br />ft. <br />ft. <br />ft. <br />ft. <br />2 06 <br />33. <br />ft, - <br />ft. <br />it. <br />[t <br />16i.So <br />0'10' <br />34377. <br />.036 <br />.145.291 <br />lot. 66 <br />0.05 <br />- 7° <br />819.0 <br />1.525 <br />6.105 <br />12.21 <br />2.10 <br />20 <br />17189. <br />.073 <br />.291 <br />.552 <br />0.10 <br />20' <br />751.5 <br />1.'000 <br />6.395 <br />12.79 <br />2.20 <br />1. 30^ <br />11459:- <br />.109 <br />.436 <br />S73 <br />0.15 <br />30 <br />764.5 <br />1.637 <br />6.540 <br />13.03 <br />2.25 <br />40 <br />8594.4 <br />1145 <br />.5S2 <br />1.164 <br />0.20 <br />40. <br />747.9 <br />1.673 <br />6.635 <br />13.37 <br />2.30 <br />50 <br />•6875.5 <br />.152 <br />.727 <br />1.454 <br />0.25. <br />8 <br />716.8 <br />1.746 <br />6.976 <br />13.95 <br />2.40 <br />1 <br />5729.6 <br />.218 <br />.S73 <br />1.745 <br />0.30 <br />20 <br />GS3.2 <br />1.519 <br />7.206 <br />14.53 <br />2.50 <br />10 <br />4911.2 <br />.255 <br />1.018 <br />2.036 <br />0.35- <br />30 <br />674.7 <br />1.855 <br />7.411 <br />14. S2 <br />2.55 <br />20 <br />4297.3 <br />.291 <br />1.164 <br />2.327 <br />0.40 <br />40 <br />661.7 <br />1.892 <br />7.556 <br />1:1.11 <br />2.60 <br />30 <br />. 3519.5 <br />.327 <br />1.309 <br />2.615 <br />0.45 <br />9 <br />G37.3 <br />1.965 <br />7.S46 <br />15. 69 <br />2.70 <br />40 <br />3437.9 <br />.304 <br />1.454 <br />2.009 <br />0. 0 <br />20 <br />614.6 <br />2:037 <br />5.136 <br />1G.2- <br />2.50 <br />50 <br />3125:4 <br />.400 <br />1.600 <br />3.200 <br />0.55 <br />30 <br />G03.8 <br />2.074 <br />S.2S1 <br />16.56 <br />2.55 <br />2 <br />2864.9 <br />.43G <br />1.745 <br />3.490 <br />0.60 <br />40 <br />593.4 <br />2.113 <br />8.426 <br />16.8:; <br />2.90 <br />10 <br />2634.6 <br />.473 <br />1.591 <br />3.781 <br />0.65 <br />10 <br />573.7. <br />2.1S3 <br />5.716 <br />17.43 <br />3.00 <br />20 <br />2455.7 <br />.509 <br />2.036 <br />4.072 <br />0.70 <br />' 30 <br />546.4 <br />2.2D3 <br />9.1;0 <br />1S. 30 <br />3.15 <br />30 <br />2292.0 <br />.545 <br />2.181 <br />4.363 <br />0.75 <br />11 <br />521.7 <br />2.402 <br />9.585 <br />19.16 <br />3.30 <br />40 <br />2145.8 <br />.552 <br />2.327 <br />4.654 <br />O.SO <br />30 <br />:-99.1 <br />2.511 <br />10.02 <br />20.04 <br />3.45 <br />50 <br />2022.4 <br />.613 <br />3.472 <br />'4.945 <br />0.85 <br />12 <br />47 S.3 <br />2. G20 <br />10.45 <br />20.91 <br />3.60 <br />3 <br />1910.1 <br />.655 <br />2. KS' <br />5.235 <br />0.00 <br />30 <br />459.3 <br />2.730 <br />10.S9 <br />31.7; <br />3.75 <br />10 <br />1809.6 <br />.691 <br />2.763 <br />5.526 <br />0.95 <br />13 <br />441.7 <br />2.S39 <br />11.33 <br />22.6-4 <br />3.90 <br />20 <br />1719.1 <br />.727 <br />2.903 <br />5.817 <br />1.00 <br />30 <br />425.4 <br />2.949 <br />11.75 <br />2;.51 <br />4.05 <br />30 <br />1637.3 <br />.764 <br />3.0" <br />6.108 <br />1.05 <br />11 <br />410.3 <br />3.053 <br />1;3.18 <br />9_t.37 <br />4.20 <br />40 <br />1562.9 <br />.500 <br />3.199 <br />6.398 <br />1.10 <br />30 <br />30.2.3.16S <br />13.62 <br />25.24 <br />4.&i <br />50 <br />1495.0 <br />.SMG <br />'3.345 <br />6.659 <br />1.15 <br />15 <br />383.1 <br />3.277.1:3.05 <br />26.11 <br />4.50' <br />4 <br />1432.7 <br />.873 <br />3.400 <br />6.950 <br />1.20 <br />30 <br />370.8 <br />3.337 <br />13.49 <br />20.07 <br />4.65 <br />10 <br />1375.4 <br />.900 <br />:3.6:i3 <br />7.271 <br />1.25 <br />16 <br />359.3 <br />3.4106 <br />13.02 <br />27.5.1 <br />3.80 <br />20 <br />1322.5 <br />.045 <br />:3.713 <br />7.:561 <br />1.30 <br />30 <br />343.5 <br />3.G06, <br />14.35 <br />28.70 <br />4.95 <br />'30 <br />1273.6 <br />.982 <br />3.926 <br />7.552 <br />1.35 <br />17 <br />335.3 <br />3.716 <br />14.73 <br />29.53 <br />5.10 <br />40 <br />1225.1 <br />1.01S <br />4.071 <br />5.143 <br />1.40 <br />1.8 <br />319.6 <br />3.935 <br />15.64 <br />3!.21) <br />5.30 <br />50 <br />11S5.S <br />1.055'4.217 <br />8.333 <br />1.45 <br />19 <br />302.E <br />4.3.55 <br />16.51 <br />'3.01 <br />5.70 <br />5 <br />1146.3 <br />1.091 <br />4.302 <br />8:724 <br />1.50 <br />20 <br />2S7.9 <br />4.374 <br />17.37 <br />34.73 <br />6.00 <br />10 <br />1109:3 <br />1.127 <br />4.507 <br />9.01» <br />1.55 <br />21 <br />274.4 <br />4.50.4 <br />1S.22 <br />36.44 <br />6.30 <br />20 <br />1074.7 <br />1.164 <br />4.653 <br />9'.305 <br />1.60 <br />22 ' <br />262.0 <br />4.514 <br />19.05. <br />34.16 <br />0.60 <br />80 <br />1042.1 <br />1.200 <br />4.795 <br />,9.593 <br />1.65 <br />23 <br />'250.5 <br />5.035 <br />10.0-1 <br />39. S7 <br />0.90 <br />'40 <br />1011.5 <br />1.237 <br />4.9.43 <br />0:550 <br />1.70 <br />24 <br />240 5 <br />5.255 <br />20.79 <br />41.53 <br />7.30 <br />'50 <br />932.6 <br />1.273 <br />5.OSS <br />WAS <br />1.75 <br />25 <br />231.0 <br />5.476 <br />21.64 <br />43.2,-, <br />7.50 <br />0 <br />955.4 <br />1.300 <br />5.234 <br />10.47 <br />1.S0 <br />26 <br />^22.315.07122.50 <br />44.99 <br />7.50 <br />1.0 <br />.929.6 <br />1.34E <br />5.379 <br />10.70 <br />1.85 <br />27 <br />214.2 <br />5.918^3.33 <br />•10.C9 <br />3.10 <br />20 <br />9011.1 <br />1:3,S215 <br />.52.4 <br />11.05 <br />1.90 <br />28 <br />206.7 <br />G.1:i9 <br />14.19 <br />!s. 0 <br />3.,0 <br />30 <br />SSL 9 <br />1.415 <br />GCO <br />11.3.1 <br />1.95 <br />^9 <br />109.7 <br />(1.360 <br />25.04 <br />50.01 <br />5.70 <br />40 <br />859.0 <br />1.455 <br />5.314 <br />11.63 <br />2.00 <br />1 30 <br />103.2 <br />fi.5S3 <br />25.85 <br />51, .70 <br />9.60 <br />jr•� The middle.ordinau3 in inches for any cord of length (0) is e+l1nal to .00 -2G - <br />OO.Li;'multipliedbythe middle orclirato- taken from the above table. Tl:tts,;f It <br />multiplied by the <br />desired to bend a 20 ft. rail to fit it 10 deerec curve, ks middle ordinate sLould <br />ly ! k bo .00124,9005<2.183 or 2.3G inches. <br />" ! f TABLE III. Deflections for Sub Chords for Short Radius Curves. <br />Degree Radius ?�subchord Lenge'.+ <br />= em c f X def. angle <br />of 50 n of arc <br />Curve sin. def. - forlGOft. <br />( o 1 i 12.5 ht. 15 rt. 1.9 Ft. I 25 Ft. <br />30° <br />193. IS <br />I° 51' <br />^' 17 <br />2' 58 <br />3' 43' <br />IOI.I" <br />!' ;!Ill'. - 32° <br />131.39 <br />1' 5e1' <br />° 25, <br />3° 10' <br />3° 58' <br />101.33 <br />34. <br />171.01 <br />2 06 <br />33. <br />3 2I <br />I2 <br />1eI.4S <br />36° <br />16i.So <br />2° 13 <br />2.° 41 <br />3° 33' <br />1. 26' <br />lot. 66 <br />a 111• 310° <br />" <br />133.510 <br />2° 20' <br />2° 49' <br />3° 4T' <br />4° 0' <br />IOI.85 <br />I; !' 40° <br />146.19 <br />2° 27' <br />2° 57' <br />3° 55' <br />4° 54 <br />102. oG <br />42' <br />139.52 <br />2° 34' <br />3' O5' <br />4' 07' <br />S' 08,IO2.29 <br />° <br />44 <br />133.47 <br />° <br />2 41 <br />° <br />3 13 <br />° <br />4 110 <br />° 22' <br />Io2.53 <br />460 <br />11, <br />127.97 <br />20 48 <br />3' 21�. <br />40 29' <br />�0 36/ <br />Ion, 76 <br />48 <br />122.92 <br />2 55 <br />3 29 <br />4 40' <br />S 50 <br />103.00 <br />1 50° <br />]IS -3I <br />3' 02' <br />. 3° 38, . <br />4° 51' <br />6° 04' <br />1o3.24 <br />I;! 52° <br />114.06 <br />3° 09' <br />3' 46' <br />5' 02' <br />66 17' <br />103.54 <br />540 <br />110.11 <br />30 16' <br />3-° 54'5 <br />° 13' <br />6031 t <br />103-84 <br />56° <br />io6.5o <br />3° 22' <br />4' 02' <br />5° 23' <br />6° 44' <br />104.14 <br />1 580 <br />103.14 <br />30 29' <br />4' 10' <br />50 34' <br />6' 57' <br />104.42 <br />+j 6o <br />Ioo.Oo <br />3. 35 <br />4 18 <br />5 44 <br />7 11 <br />.: <br />104.7 <br />IX <br />CURVE FORMULAS <br />T= R tan ; I R=. T cot. ' I chord2 <br />T _ 56 tan I Chord def _ =R <br />Sin. j} D R _ 50 <br />Sin. <br />1z D <br />Sin } D _ 5o _7c,,, chords <br />R = I <br />E = Rex. sec 1-1 D <br />5o tan e I , 1 <br />Sin. } D = T E = T tan j I Tara. def. = l chord def: <br />The square of any distance, divided by twice the radius, will equal <br />the distance from tangent to -curve, very nearly. <br />To find angle for a given distance and deflecticri. <br />Rule I. Multiply the given distance by .or743; (def. for I° for I ft. <br />see Table II.), and divide given deflection by the product. <br />Rule 2. Multiply given deflection by J7.3, and divide the product by <br />the given distance. <br />To find deflection for a given angle and distaa=. Multiply the angle <br />by .01745, and the product by the distance. <br />GENERAL DATA <br />RIGHT ANGLE TRIANGLES. Square the altitude, divide by twice the <br />base. Add quotient to base for hypotenuse. <br />Given Lase loo; Alt. Io.102=200=.5. 100"}-.5=100.5 hyp. <br />Given Hyp. 100,A1t.25.252=200=3.125. rco-;3.12,3=96.875=Base. <br />Errcr in fart example, .00-; In last, .047. <br />To find Tons of Rail in one mile of track: n!ukiply v:eiglit per yard <br />by I I, and divide by 7. <br />LE4ELING. The correction for curvature and refraction, in feet <br />and decimals of feet is equal to 0.574de, where d is the distance in miles. <br />The correction for curvature alone is closely, UI-. The ccmbined cor- <br />rection IS negative. <br />Pro : BLL1 ERROR. Ii d,, &, da, etc. are the discrepancies of various <br />res111ts from the mean, and if 1d -=the sum of the squares of these differ- <br />ences and n=the number of observations, then the probable error of the <br />me�11= <br />5 I ` S -d2 <br />SOLAR ErLr_�iri ts. Attention is called to the. Solar E hemeris for <br />the current year, published by Keuffcl fi Esser Co_ and furnished free of <br />charge upon request, which is 3;;}x5j in., with abou t 90 pages Of data very <br />Useful to t'1e Surveyor; 'S'uch as the adjustments of trar_sAs, levels and <br />solar attachments; directions and -tables for determining the meridian <br />and the latitude from observations on the sun ands Polaris; stadia meas- <br />urements; magnetic declination; arithmetic constar...ts; English and Metric <br />conversions' trigonometric f ormulas; Natural and Logarithmic Functions; <br />and Logarithms of Numbers. <br />TABLE IV. = 1\iinutes in Decimals o[ a Degree.. <br />1' .01617 11' 1533 :Li' .3500 31' .5167 It' .6833 51' .5500 <br />2 .0333 12 .2000 "': .3667 32 .5353 62 ' .7000 52 .8667 <br />3 .0500 13 .2167 21 .3333 33 .5500 43 :7167 53 5833 <br />4 .0667 14 .2333 24 .4000 34 .5657 44 .7333 :r1 .9000 <br />5 .0533 15 .2500 25 .4167 35 .5333 45 .7500 55 .9167 <br />6 .1000 10 .2667 26 .4333 3G .6000 46 .7667 56 .9333 <br />7 .1107 1-, .2$33 27 .4300 37 .0167 47 7333 57 .9500 <br />8 .1333 is .3000 28 .4067 39 G333. 48 .1000 58 .9667 <br />9 .1500 19 .3167 29 .4533 39 G500 49 0167 59 .9333 <br />10 .1667 20 .3333 30 .5000 40 .6667 .50 .`3331 CO 1.0000 <br />TA$Lr✓ V. - Inches in Decimals of a hoot. <br />1.16E <br />14 3-16 1a 5-1G 3y a§ is 35 i3 <br />0052..OID4 0756 .0203 .0260 .0313w17 .0521 OG25 .0721 3 . 4 5 G 7 S 9 10 11 <br />3 .2500 .3333 .4167 .5000 .5S33 .5367 .7:100 .8333 .0167 <br />