Laserfiche WebLink
VIII' Ix <br />TABLE II. - Radii,,' Ordinates and Dcflecti6ns..Choi'd=100 ft. CURVE FORMULAS. <br />Deg' <br />Radius <br />I,fil <br />Ord. <br />Tan. <br />Dist. <br />Def. <br />Diet <br />Def' <br />for <br />1 Ft. <br />"Deg. <br />liadius <br />Mill <br />Ord. <br />Tan <br />Dist. <br />Def.' <br />Dist. <br />Def. <br />for <br />1 Ft. <br />^° 17, <br />ft. <br />it. <br />t.- <br />ft. <br />! <br />I° J9' <br />ft, <br />ft. <br />ft. <br />ft. <br />34° <br />0°10'34377. <br />2° 06' <br />.036 <br />.145 <br />.291 <br />0.05 <br />V • <br />819.0 <br />1.528 <br />6.105 <br />12.21 <br />2.10 <br />20 <br />17159. <br />.073 <br />.291 <br />.552 <br />0.10 <br />20' <br />781.8 <br />1.600 <br />6.395 <br />12.79 <br />2.20 <br />30 <br />,11459. <br />.109 <br />.436 <br />.873 <br />0.15 <br />30. <br />764.5 <br />1.637 <br />6:540 <br />13.OS <br />2.25 <br />40 <br />8594':4 <br />.145 <br />.552 <br />1.164 <br />0.20 <br />-40 <br />747.9 <br />1.673 <br />6.635 <br />13.37 <br />2.30 <br />50- <br />6875.5 <br />'.152 <br />.727 <br />1.454 <br />0.25 <br />8 <br />716.8 <br />1.746 <br />G.97G <br />13.95 <br />2.40 <br />1 <br />5729.6 <br />.21S <br />'.873 <br />1.745 <br />0.30 <br />' 20 <br />GSS.2 <br />1.519 <br />'7.260 <br />14.53 <br />2.50 <br />70 <br />4911.2 <br />.255 <br />1.018 <br />2.036 <br />0.35 <br />30 <br />674.7 <br />1.555 <br />7.411 <br />14.822.55 <br />58° <br />20 <br />4297.3 <br />.291 <br />1.164 <br />2.327 <br />0.40 <br />40 <br />G61.7 <br />1.S92 <br />7.556 <br />15.11 <br />2.f0 <br />30 <br />3519.8 <br />.327 <br />1.309 <br />2.GIS <br />0.4.5 <br />9 <br />G37.3 <br />1.965 <br />7.546 <br />15.69 <br />2.70 <br />40 <br />3437.9 <br />.3G4 <br />1.454 <br />2.909 <br />0.50 <br />20 <br />614.6 <br />2.037 <br />8.136 <br />16.27 <br />2.80 <br />50 <br />3125.4 <br />.400 <br />1.600 <br />3.200 <br />0.55- <br />30 <br />603.8 <br />2.074 <br />8.251 <br />16.56 <br />2. Sr, <br />2 <br />2504.9 <br />.430 <br />1.745 <br />3.490 <br />0.60 <br />40 <br />593.4 <br />2.110 <br />8.426 <br />16.55 <br />2.90 <br />10 <br />2644.6 <br />.473 <br />1.S91 <br />3.751 <br />0.65 <br />10 <br />573.7 <br />2.183 <br />5.716 <br />17.43 <br />3.Oi1 <br />20 <br />2455.7 <br />.509 <br />2.036 <br />4.072 <br />0.70 <br />1 30 <br />546.4 <br />2.292 <br />9.150 <br />18:20 <br />30 <br />2292.0 <br />.545 <br />2.181 <br />4.363 <br />0.75 <br />11 <br />521.7 <br />2._02, <br />9.555 <br />19.16 <br />.3 <br />3.30 <br />-- 40- <br />214S.S <br />.5S2 <br />2.327 <br />4.654 <br />0.80 <br />30 <br />199.1 <br />2.511 <br />10.02 <br />20.04 <br />3.45 <br />50 <br />2022.4 <br />.618 <br />2.472 <br />4.945 <br />0.55 <br />12 <br />473.3 <br />2.G20 <br />10:45 <br />20 01 <br />3.60 <br />3 <br />1910.1 <br />.655 <br />2.618' <br />5.235 <br />0.90 <br />30 <br />459:3 <br />2.730 <br />10.59 <br />21.77 <br />3.76 <br />10 <br />1809.G <br />.G91 <br />2.763 <br />5.526 <br />0.95 <br />13 <br />441.7 <br />2.839 <br />11.32 <br />22.6= <br />3.90 <br />20 <br />1719.1 <br />.727 <br />2.903 <br />5.517 <br />1.00 <br />30 <br />425.4 <br />2.949 <br />11.75 <br />23.51 <br />4.0:i <br />30 <br />1637.3 <br />.754 <br />3.054 <br />6.108 <br />1.05 <br />14 <br />410.3 <br />3.058 <br />12.15 <br />2.1.37 <br />,1.20 <br />40 <br />1562.9 <br />.SOD <br />3.199 <br />GMS <br />1.10 <br />30 <br />366.2 <br />3.165 <br />12.62 <br />25.24 <br />4.35 <br />50 <br />1495.0 <br />.S30 <br />3.3.15 <br />6.689 <br />1.15 <br />15 <br />353.1 <br />3.277 <br />13.05 <br />23.11 <br />4.50 <br />4 <br />1432.7 <br />.S73 <br />3.490 <br />(3.980 <br />1.20 <br />30 <br />370.5 <br />3.357 <br />13.40 <br />23.97 <br />10 <br />1375.4 <br />.909 <br />3.635 <br />7.271 <br />1.25 <br />16 <br />359.3 <br />3.496 <br />13.92 <br />27.84 <br />1.50 <br />20 <br />1322.5 <br />.9.15 <br />3.713 <br />7.561 <br />1.30 <br />30 <br />343.5 <br />'1.GOG <br />1.1.35 <br />28.70 <br />4.95 <br />30 <br />1273.6 <br />.DS2 <br />3.9213 <br />7.552 <br />1.35 <br />17 <br />338.3 <br />3.71G <br />14.78 <br />29.5E <br />5. P') <br />40 <br />122S.1 <br />1.01S <br />4.071 <br />8.143 <br />1.40 <br />18 <br />319.E <br />3.935 <br />15.64 <br />31.29 <br />5.•10 <br />50 <br />1185.8 <br />1.055 <br />4.217 <br />S.433, <br />1.45 <br />19 <br />302.9 <br />4.155 <br />16.51 <br />33.01 <br />5.70 <br />b <br />11•!6.3 <br />1.091 <br />4.362 <br />5.724 <br />1.50 <br />20 <br />257.9 <br />4.374 <br />17.37 <br />34.73 <br />6.00 <br />10 <br />1109.3 <br />1.127 <br />4.507 <br />9.014 <br />1.55 <br />21 <br />274.4 <br />4.594 <br />13.22' <br />36.44 <br />6.30 <br />20 <br />1074.7 <br />1.164 <br />4.653 <br />9.305 <br />1.60 <br />22 <br />262.0 <br />4.514 <br />19.03 <br />3S. 1G <br />6.60 <br />30 <br />1042.1 <br />1.200 <br />4.795 <br />9.596 <br />1.65 <br />23 <br />230.8 <br />5.035 <br />19.94 <br />39.S7 <br />6.90 <br />40 <br />1011.5 <br />1.237 <br />4.943 <br />9.SSG <br />1.70 <br />24 <br />240.5 <br />5.255 <br />20.79 <br />41.53 <br />7.20 <br />50 <br />•952.6 <br />1.273 <br />5.OSS <br />10.15 <br />1.75. <br />25 <br />231.0 <br />5.•:7G <br />21.64 <br />43.23 <br />'.60 <br />6055.4 <br />1:309 <br />5.234 <br />10.47 <br />1.SO <br />26 <br />G 2.3 <br />5.697 <br />2%.50 <br />44.99 <br />7.SO <br />10 <br />-929.6 <br />1.346 <br />5.379 <br />10.76 <br />1.85 <br />27 <br />214.2 <br />5.915 <br />_^3.35 <br />46.60 <br />G.!0 <br />20 <br />905.1 <br />1.353 <br />5.524 <br />11.05 <br />1.90 <br />23 <br />2UG.7 <br />G. 139 <br />24.19 <br />45.33 <br />SAO <br />30 <br />581.9 <br />1.415 <br />5.669 <br />11.34 <br />1.95 <br />29 <br />199.7 <br />6.300 <br />25.04 <br />50.07 <br />S.70 <br />40 <br />1 S59.9 <br />1.455 <br />5.81-± <br />11.63 <br />2.00 <br />30 <br />193.2 <br />6.553 <br />25.58 <br />51.76 <br />9. 06 <br />The middle ordinate in inches for any cord of icngth (C) is equal to 0012 0' <br />multiplied by the middle ordinate taken from the above table. Thus, if it <br />desired to bend a 30 ft. rail to fit a 10 degree curve, its middle ordinate ehonld <br />be .0012X900X2.163 or 2.36 inches. <br />TABLE III. Deflections for Sub Chords for Short Radius Curves. <br />Degree <br />of <br />Curve <br />Radius <br />50 <br />A suh chord = sin of.' def. angle <br />rt <br />Length <br />of arc <br />for 1110 ft. <br />sin..'_, def. ang. <br />12,5 -Ft. <br />15 Ft. <br />20 Ft. <br />25 Ft. <br />30° <br />193.18 . <br />I° 51, <br />^° 17, <br />2° 58' <br />3° 43' <br />101.13 <br />320 <br />151.39 <br />I° J9' <br />2° 25 <br />3° lo' <br />;° 58' <br />I0I.33 <br />34° <br />.171.01 <br />2° 06' <br />:2 33' <br />3° 21' <br />4° I2' <br />I01.48 <br />36° <br />161.8o- <br />2° 13.'. <br />2° 41' <br />�° J3' <br />° 26' <br />ioi .66 <br />380 <br />153.58 <br />2° 20' <br />z° 49' <br />3° 44' <br />4° 40' <br />ioi.85 <br />40° <br />r46. f9 <br />2° 27' <br />°--° 57' <br />3' 55' <br />4' 54' <br />IO2.06 <br />42' <br />139.52 <br />'° 347 <br />3° 05' <br />4° 07' <br />5° 03 <br />102.29 <br />.102.53 <br />440 <br />133 •.47 <br />2° 41' <br />3° 13'• <br />4°' 18' <br />5° 22' <br />26 <br />q6°• <br />127.97 <br />2°48' <br />3°.2I' <br />4°29' <br />S°.36' <br />102.76 <br />480 <br />122.92 <br />2° 55' <br />3° 29'- <br />4° 40' <br />-. So' <br />Io3.o0 <br />50° <br />118.31 <br />3°'02' <br />3°38'4° <br />51' <br />6°04 <br />103.24 <br />52° <br />114.o6 <br />3° 09' <br />3° 46' <br />5° 02' <br />6° 17' <br />103.54 <br />54° <br />110.11 <br />3° 16' <br />3° J4' <br />5° 13' <br />6° 31' <br />103.84 <br />SG° <br />Io6. 5o <br />3° 22' <br />4° 02 <br />;5° 23' <br />6° 44' <br />104.14 <br />58° <br />103.14 <br />3°29' <br />4°10' <br />5°34' <br />6°57' <br />104.43 <br />6o° <br />100.00 <br />3° 35' <br />4° 18' <br />5044 , <br />°44' <br />7° 11' <br />104.72 <br />.T = R tan } I R= T cot. 3 I chord' <br />So tan I Chord def. = R <br />Sin. } D R = 50 <br />Sin. } D ='-' Sin. 2 D No. chords = D <br />R I3 = R:ex. sec ' I . <br />Sin:, j D. _ 50 tarn I. E ""= T tan JI-- Tan. def. = I chord def. <br />The square of any distance,- divided by twice the radius, will equal <br />the distance from tangent to'curve, very.nearly. <br />To find angle fora given distance and deflection. <br />Rule I. 11'lultiply the given distance by -01745 (def. for I° for I ft. <br />see Table -II.), and divide given deflection by the product. <br />Rule 2. Multiply given deflection by J1.3, and divide the product by <br />the given distance. <br />,To find deflection for a given angle and distance. Multiply the angle <br />by .01745, and the product by the distance. <br />GENERAL DATA <br />.RIGHT AIGLF TRIANGLES. Square the altitude, divide by twice the <br />base. Add quotient to base for hypotenuse. <br />Given. Bare loo, Alt. 10.102=200=.5..100"7-.5=,I0o.5 hyP- <br />Given'IIyp. loo, Alt. 25.25= .200=3.72.5. loo-3.125=96.875=Base. <br />Error in first example, .002: in last, .045. <br />To find Tons of Rail in one mile of trach: :multipiy weight per yard <br />by rr, and divide by 7. <br />LEVELING. The correction for curvature and refraction, in feet <br />and decimals of feet is equal to 0.574 d', where d is the distance in miles. <br />The correction for curvature alone is closely, I-. The combined cor- <br />rection is negative. <br />PPODABLE ERROR. If d, , &, d, etc. are the discrepancies of various <br />result3 from the mean, and if fd2-the sum of the squares of these differ- <br />ences and n=the number of obscr,ations, then the probable error of the <br />Ineza= y 0.67451 YC1' <br />-\ a (n-1) <br />SOLAR EPHniirRIS. Attention is called to 'he Solar E -hemeris for <br />the current year, published by Keuffel & Esser Co., and furnished free of <br />charge upon request, which is 341-x5j, in., With about 90 pages of data very <br />useful to the Surveyor; such as the adjustments of transits, levels and <br />solar attachments; directions and tables for determining the meridian <br />and the latitude from observations on the sun ,and Polaris; stadia meas- <br />urements; magnetic declination; arithmetic constants; English and Ri ctric <br />conversions; trigonometric formulas; Natural andLogarithmic Functions; <br />and logarithms of -Numbers. <br />TABLE IV. - ?'Iinutes in Decimals of a Degree. <br />1' <br />.0167 <br />TABLE V. - <br />1533 <br />21' <br />.35001 <br />31' <br />.5167 <br />41' <br />.6833 <br />51' <br />.5500 <br />2 <br />.0333 <br />11P. <br />12 <br />.2000 <br />22 <br />.3667 <br />32 <br />.0338 <br />42 <br />.7000 <br />52 <br />.5667 <br />•3' <br />.0500 <br />13 <br />.21 G7 <br />23 <br />.3533 <br />33 <br />.5500 <br />43 <br />.7167 <br />53 <br />SS33 <br />4 <br />.0667 <br />-. <br />.2333 <br />24 <br />.4003 <br />34 <br />.5667 <br />44 <br />.7333 <br />54 <br />.9000 <br />bOS33 <br />15 <br />.2500 <br />25 <br />1167 <br />35 <br />.5833' <br />45 <br />.7500 <br />55 <br />.9167 <br />G• <br />.1000 <br />1G <br />.2667- <br />26 <br />.4353 <br />36 <br />.6000 <br />16 <br />.7CG7 <br />56 <br />.9333 <br />7 <br />.1167 <br />1 17 <br />.2533 <br />27 <br />.4500 <br />37 <br />.6167 <br />'7 <br />.7S33 <br />57 <br />.9500 <br />8 <br />.1333 <br />18 <br />.3000 <br />28 <br />.4667 <br />38' <br />.0333 <br />48 <br />.1.000 <br />58 <br />.9667 <br />9 <br />1.1500 <br />19 <br />1 <br />.3167 <br />29 <br />.4&3.3 <br />39 <br />.6509 <br />49 <br />.SI G7 <br />59 • <br />9533 <br />10 <br />.1667 <br />20 <br />1 .3333 1130 <br />1 .5000 <br />11 40 <br />1 .(N <br />50 <br />1 .5333 <br />60- <br />I 1.0000 <br />TABLE V. - <br />Inches in Decimals of a foot. ' <br />1-1G <br />3-32 <br />X <br />3-16 <br />Y <br />516 <br />1 s <br />X <br />0052 <br />.OUTS <br />.0104 <br />.0156 <br />.0203 <br />.0260 <br />.0313 <br />.0 17 .0 21 <br />.0620 <br />.0 9 <br />1 <br />2 <br />3 <br />4 <br />5 <br />G <br />7 <br />S 9 <br />lU <br />11 <br />.0933 <br />.1667 <br />.2500 <br />.33"1.3. <br />.4167 <br />.5000 <br />.5S33 <br />.6667 .7500 <br />.5333 <br />.9167 <br />