Laserfiche WebLink
VIII <br />TABLE IL -Radii, Ordinates and -Deflections. Chord= 100 ft, <br />Deg.' <br />'Rad us. <br />Ifid. <br />Ord. <br />Tan. <br />Diet, <br />Dd. <br />Dista <br />Def' <br />for <br />I Ft <br />Deg. <br />Radius <br />Mid. <br />Ord.' <br />Tan. <br />Dist;` <br />DcE, <br />Dist. <br />Dei. <br />far <br />I Ft. <br />2° 17' <br />it. <br />ft. <br />ft. <br />ft. <br />r <br />I° 59' <br />it,• <br />ft. <br />it, <br />ft. <br />34 <br />0'10' <br />34377. <br />.036 <br />.145 <br />.201 <br />0.05 <br />7° <br />819.0 <br />1.528 <br />6.105 <br />12.21 <br />2.10 <br />20 <br />17189. <br />073 <br />. .291 <br />1 .582 <br />0.10 <br />20' <br />781.8 <br />1.600 <br />6.395 <br />12.79 <br />2.20 <br />30 <br />11459. <br />.100 <br />.436 <br />.873 <br />0.15' <br />30 <br />764.5 <br />1.637 <br />'6.540"13.03 <br />44° <br />2.25 <br />40 <br />8594.4 <br />,145 <br />.552 <br />1,164 <br />0.20 <br />40 <br />747.9 <br />1,875 <br />6,635 <br />13.37 <br />2.30 <br />50 <br />.6875.5 <br />.182 <br />.727 <br />1.454 <br />0.25 <br />8 <br />715,8 <br />1 740 <br />6.0,76 <br />1a.9 <br />2.40 <br />1 <br />5729.6 <br />.218 <br />.873 <br />1,745 <br />0.30 <br />20 <br />658.2 <br />1.519 <br />7.266 <br />14.53 <br />2.50 <br />10 <br />.4911.2 <br />.255 <br />1.018 <br />2,036 <br />0.35 <br />,30 <br />674.7.1.855 <br />5 23 <br />7.411 <br />14.82 <br />2.55 <br />20 <br />4297.3 <br />,291 <br />1.164 <br />2.327 <br />0.40 <br />40 <br />661.7 <br />1.892 <br />7.556 <br />15.11 <br />2.60 <br />30 <br />3819.8 <br />.327 <br />1.309 <br />2,618 <br />0.95 <br />9-. .' <br />637.3 <br />1.905 <br />7.846 <br />15.69 <br />2.70 <br />40 <br />3437.9 <br />,364 <br />1.454 <br />2,909 <br />0.50 <br />20 <br />G14.0 <br />2;037 <br />8.136 <br />10.27 <br />2.80 <br />50 <br />3125.4 <br />,400 <br />1.600 <br />3.200 <br />0.55 <br />30 <br />603.8 <br />2,074 <br />8.281 <br />10.56 <br />2.85 <br />2 <br />2864.9 <br />,430.1.745 <br />3.490 <br />0.60 <br />40 <br />593.4 <br />2.113 <br />8.426 <br />16.85 <br />2.90 <br />10 <br />2644.6 <br />.473 <br />1.591 <br />3.731 <br />0,65 <br />10 <br />573.7 <br />2:183 <br />S.71n <br />1.7.43 <br />3.00 <br />20 <br />2455.7 <br />.509 <br />2.03G <br />4.072 <br />0_70 <br />' 30 <br />540.4 <br />2.292, <br />9. 1.50 <br />18.30 <br />3.15 <br />30 <br />2292.0 <br />.545 <br />2.181 <br />4,363 <br />0.75 <br />11 <br />521.7 <br />2.40.^. <br />0_5&5 <br />19.16 <br />3.30 <br />40 <br />2148.8 <br />.,582 <br />2,327, <br />4.654 <br />0.80.' <br />• 30 <br />499.1 <br />2.511 <br />10.02 <br />20.0,1 <br />3.45 <br />50 <br />: 2022:4 <br />.:618 <br />2.472 <br />4.945 <br />0.8;5 <br />12 <br />478.3 <br />2.G20 <br />10.45 <br />20.91 <br />3.60 <br />S <br />1910.1 <br />,655 <br />2.618 <br />5.235 <br />0.90-, <br />30 <br />459.3 <br />2.730 <br />10.59 <br />21.77 <br />3.75 <br />10, <br />ISOM <br />.6912.763 <br />5.526 <br />0.95 <br />.13 <br />441.7 <br />2.839 <br />11.32 <br />22.64 <br />3.90 <br />20' <br />1719.1 <br />.727 <br />2.908 <br />5.817 <br />1.00 <br />'30 <br />425.4 <br />2.949 <br />11.75 <br />23.51 <br />4.05 <br />30 <br />.1637.3 <br />".764 <br />3.054 <br />6.10S <br />1.05 <br />14 <br />410.3 <br />3.058 <br />'12,18 <br />24.37 <br />4.20 <br />40 <br />1562.9 <br />.800 <br />3.199 <br />G,398 <br />1.10 <br />30 <br />396.2 <br />3.168 <br />12.62 <br />25.24 <br />4.35 <br />50 <br />1495.0 <br />.836 <br />3.345 <br />6,689 <br />1.15 <br />15 <br />3S3.1 <br />3.277 <br />13.05 <br />26.11 <br />4.50 <br />1432.7 <br />.873 <br />3.490 <br />G.980 <br />1,20 <br />30 <br />370.8 <br />3.357 <br />13:49 <br />26107 <br />4.65 <br />10 <br />1375:4 <br />.909 <br />3.635 <br />-7:271 <br />1,25• <br />16 <br />359.3 <br />3.496 <br />13192 <br />27.S4 <br />4.80 <br />20 <br />1322,5 <br />.945 <br />3.718 <br />7.561 <br />1.30 <br />30 <br />348.5 <br />3.606 <br />14.35 <br />25.70 <br />4.95 <br />30 <br />1273.6 <br />.9S2 <br />3.92G <br />7.852'1,35 <br />17 <br />335.3 <br />3.716 <br />14.78 <br />29.56 <br />5.10 <br />40 <br />1228,1 <br />1.018 <br />4.071 <br />8.143 <br />1.40. <br />18 <br />319.6 <br />3.935 <br />15AA <br />31.29 <br />5.40 <br />50 <br />1185.8 <br />1.055'4.217 <br />8.4331.45 <br />19 <br />302.9 <br />4.155 <br />16.51 <br />33.01 <br />5.70 <br />6 <br />1140,3 <br />1.091 <br />4.362 <br />8.724 <br />1,50 <br />20 <br />287,9 <br />4,374 <br />17.37 <br />34.73 <br />0.00 <br />10 <br />1109.3 <br />1,127 <br />4.507 <br />9.014 <br />1.55 <br />21 <br />274.4 <br />4.594 <br />18.22, <br />30.4-1 <br />6.30 <br />20 <br />1074.7 <br />1.164 <br />4.653 <br />0.305 <br />1,60' <br />22 <br />262.0 <br />4:814 <br />19.08 <br />38.16 <br />0.60 <br />30 <br />'40 <br />1042.1 <br />1.200 <br />4.798 <br />9.596 <br />1,05 <br />23 - <br />250.8 <br />5.035 <br />19.94' <br />39.87-6.90 <br />1011.5 <br />1.237 <br />4.943 <br />9.586 <br />1.70 <br />24 <br />240.5 <br />5.255 <br />20.79 <br />41.55 <br />7.20 <br />50 <br />982.6 <br />1.273 <br />5.088 <br />10,18 <br />1.75 <br />25 <br />231.0 <br />5.476 <br />21.6t <br />43.21 <br />7.50 <br />6. <br />955.4 <br />1.300 <br />5.234 <br />10.47. <br />1.80 <br />26 <br />222.3 <br />5.697 <br />22,50 <br />44,000 <br />7.80 <br />10 <br />929.6 <br />1.346 <br />5.379 <br />10.76 <br />1.85 <br />27 <br />214.2 <br />5.915 <br />23.35 <br />96.69 <br />5.10 <br />20 <br />905.1 <br />1.382 <br />5.524 <br />11.05 <br />3.90 <br />28 <br />206,7 <br />6,139 <br />24.19 <br />48.35 <br />8-40 <br />30 <br />881.9 <br />1.418 <br />5,669 <br />11.34 <br />1.95 <br />29 <br />199.7 <br />6.3GO <br />25.04 <br />50.07 <br />8.70 <br />40 <br />859.9 <br />1.455 <br />5.814 <br />11,63 <br />2.00 <br />30 <br />_193.216.683126.88 <br />51.76 <br />9.00 <br />111�te 1n iuenes Lor any coru of length tui is equal to .0012 U - <br />multiplied by the middle ordinate taken ,from the above table. Thus, if it <br />desired to bend as 30 ft. rail to fit 10 degree curve, its middle ordinate':lieuld <br />be .0012X90OX2.183 or 2.36 inches, <br />TABLE III. Deflections for Sub Chords for Short Rndhis C"urxm, <br />Degree <br />Cnrre <br />1ZaUs <br />50 <br />'sub chord = gin of I def. angle <br />Leagtn <br />of are <br />Tor 100 it. <br />sin. I def: ane. <br />12.5 Ft. <br />I5 Ft. <br />20 Ft. <br />25 Ft. <br />30° <br />193..18 <br />0 51.' <br />2° 17' <br />2'.58' <br />- <br />43'I01.15 <br />.2000 <br />320 <br />181,39 <br />I° 59' <br />° 25, <br />3° Io' <br />.3° <br />30 58' <br />EOE .33 <br />34 <br />171-01 - <br />2'OG <br />2°33 ' <br />3°2I' <br />4' 12' <br />ICIT .48 <br />36° <br />161.8o <br />2° 13' <br />2° 41 <br />3° 33' <br />4° 26' <br />foi.66 <br />38° <br />153.53 <br />2° 20' <br />2° 49' <br />3° 44'. <br />4° 40' <br />I0I.85 <br />4.00. <br />14.6. ][g <br />2° 27 <br />2° 57 <br />3° JJ' <br />4° 54' <br />r02.06 <br />42 <br />139.52 <br />2 34' <br />3° 05' <br />4° 07' <br />S°os <br />102.29 <br />44° <br />133.47 <br />2° 41' <br />3° 13' <br />4° 18' <br />5° 22' <br />102.53 <br />4F° <br />17-97 <br />2° 48' <br />3° 21' <br />4°z9' <br />5° 36' <br />162.76 <br />43° <br />122.92 <br />2° 55' <br />3° 2g' <br />4° 40' <br />5° 50' <br />103.00 <br />50° <br />IIS,31 <br />3° 02' <br />3° ,ig' <br />4° 51' <br />6° 04' <br />103,-'4 <br />52° <br />114.06 <br />3° 09' <br />3° 46' <br />3° 02' <br />60 '7' <br />-! <br />10 54 <br />3.84 <br />540 <br />I1o.11 <br />3o IG' <br />30 54` <br />50 13' <br />6° 31' <br />P03 84 <br />56 <br />1o6.5o <br />3 22 <br />4 42 <br />5 23 <br />6° 44' <br />104.14 <br />58° <br />103, 14 <br />3° 29 <br />4° 40' <br />y° 3.1 <br />6° 57' <br />104-43 <br />60° <br />I00.00 <br />3° 35 <br />4.° 18' <br />5044 ' <br />7° 1 I' <br />104-72 <br />.. <br />CLiRVE FOR1l4i,LkS IX <br />1= It tan t 1 R= T cat. z I chord2 <br />T _ Jo tan 2 I Chord def. =- R <br />^ Sin. D R = 50 <br />I,- <br />Sin.,D =' Sin. a D No. chords= I <br />"'' " E= R ,ex. sec a I D <br />Sin; 'D = S° tT ' I E = T tan 11 : Tan.1f.= 3 chard def: <br />The square of any distance, divided by twice the radius; will equal <br />the _distance from tangent to curve, very nearly. <br />To find angle for a given distance and deflection. <br />Rule I. Multiply the given distance by -0174.5 (def. for. I° for I ft. <br />see Table II.), and divide given deflection by the product. <br />Rule 2.' Multiply given deflection by 57.3, and divide the product by <br />the given distance. <br />To find deflection for a given angle and distance. Multiply the angle <br />by .01745, and the product by the distance: <br />GENERAL DATA <br />RIGHT ANGLE TRIANGLES. Square the altitude, divide by twice the <br />base. Add quotient to base for hypotenuse.. <br />Given Base 100, Alt. 10.][02=200=-5.•Ioo+.5=loo•5 hyp• <br />Given'Hyp. Ioo,AIt.25-25E-200=3-125. roo-3.1$ <br />25=96.875=ase. <br />Error in first example, .002; an last, .045. <br />To find Tons. of Rail in one mile -of track: multiply weight per yard <br />by II;.and divide by 7.- <br />. LEVELING. The correction forcurvature and refraction, in feet <br />and decimals of feet is equal to 0.574d2,wheve d is the distance in miles. <br />The correction, for curvature alone is closely', id2.. The combined .cor- <br />rection is negative. <br />PROBABLE ERROR. If dtd2, d$, etc. are the discrepancies of various <br />results from the mean, and if 7-d2=the sum of the squares of these differ- <br />ences and n=the number of obsen>ations, then the probable error of the <br />mead 0A45 �d2 ' <br />n (n-1) <br />SOLAR EFHE',iER1s. Attention is called to the Solar Ephemeris, for <br />the current year, published by Keufiel c0,. Ewer Co., and furnished free of <br />charge upon request, which is 31,x51 in., with about 90 pages of data very <br />usefuI,to the Surveyor; such as the adjustments of transits, levels and <br />solar attachments; directions and tables for determining the meridian <br />and the latitude from observations on the sun and Polaris; stadia meas- <br />urements; magnetic declination; arithmetic constants; English and Metric <br />conversions; trigonometric formulas; Natural. andLogarithmic Functions; <br />and Logarithms of tTumbers. <br />TA.RLP, TV. - 1Viinutps in Doairnnb; of a. DP.arne.. <br />V <br />0167 <br />11' <br />.1833 <br />21' <br />.3500 <br />31' <br />ZI67 <br />41' <br />.US33 <br />51' <br />.8500 <br />2 <br />.0333 <br />12 <br />.2000 <br />22 <br />.3667 <br />.0104 <br />.5333 <br />42 <br />.7000 <br />52 <br />.S667 <br />3.0500 <br />.0625-_.0720 <br />13 <br />.2167 <br />23 <br />.3833 <br />132 <br />33- <br />.:500 <br />43 <br />.7167 <br />53 <br />.5833 <br />4 <br />,0667 <br />14 <br />.2333 <br />24 <br />.4000 <br />3-. <br />.1667 <br />44 <br />.7333 <br />54 <br />.9000 <br />5 <br />.;0533 <br />15 <br />.2500 <br />25 <br />.4167 <br />35 <br />.SS33 <br />45 <br />.7500 <br />55 <br />.9167 <br />6.1000 <br />1G <br />.2667 <br />26 <br />.4333 <br />3e. <br />.43000 <br />46 <br />.7667 <br />543 <br />.9333 <br />'7 <br />.11G7 <br />17 <br />.2533 <br />27 <br />.4560 <br />37 <br />.6167 <br />47 <br />.7933 <br />57 <br />.9500 <br />6 <br />.133; <br />18 <br />.3000 <br />28 <br />.4667 <br />38 <br />.6333 <br />48 <br />3000 <br />58 <br />.9(367 <br />9 <br />1500 <br />19 <br />.3167 <br />29 <br />.4833 <br />39 <br />.6500 <br />49 <br />.�,167 <br />59 <br />.0833 <br />10 <br />.1667 11 <br />20 <br />.3333 11 <br />30 <br />1 :5000 <br />40 <br />. 6-367 11 <br />50 <br />£313 <br />I'C(I <br />1.0000 <br />= <br />II_ABLE V. - Inches in Dccira,02 of _a• Foot. <br />1-16 <br />3-32 <br />l <br />3-16 <br />/4 <br />5-1G <br />It <br />?/2 <br />V$ <br />3r <br />o <br />0052 <br />.0078 <br />.0104 <br />.0155 <br />.020S <br />.0260 <br />.0313 <br />.0-117 <br />.0521 <br />.0625-_.0720 <br />1 <br />2 <br />3' <br />5 <br />6 <br />7 <br />8 <br />9 <br />10 <br />11 <br />.0833 <br />.1667 <br />.2500 <br />.3333 <br />,4167 <br />.5000 <br />.5x33 <br />6667 <br />,7500 <br />..5833 <br />,9167 <br />