Laserfiche WebLink
b�` c %i TRIGONOMETRIC FORMUL/E ' <br />B <br />ir_ 15 <br />c C C <br />/2. 30: �� - y /-� a o a. <br />G. r 7�- r ,: <br />9 ii7 l �; �• -- -= 4tit3106 CAA ti t o b C <br />` Z' �{p� /06• oa _ _ _ Right Triangle Oblique 'Triangles <br />Solution of Right Triangles <br />' <br />-Fe <br />or Angle A. sin = , 'os e , tan= b , cot = a , sec = b, cosec = <br />a <br />Given Required a - z <br />a, b -d, B ,c [at) A = =cot B, c = ti.`cc + o- = rc 1 + 2 <br />- vq <br />a, c A, B, sinA=�=Cos B,b=TicJ1-02 <br />A, ra B, b, c B=90°—A, b = acotA, c= a <br />sin A. <br />1, _'. �._-.•' % Z , o / `5� i't b <br />��✓� A, b B, ra, c B = 90°—A, a = b tan A ,, c = <br />cos A. <br />r/. .. �!�y U' -A, c B, a, b B=90°—A, a = csin A,,b= c cos A, <br />I „G z r--�' <br />Solution of Oblique Tiangles <br />O J ✓ -Given Required <br />3_j /i/�Z3—• '7G asinB asinC <br />%2?_- A, B,a b, c, C b= sinA G'=150°—,A+B),c= <br />sin A <br />/2. o b sin A - ctsin G' <br />A, a, b B, c, G' sing= a C = 1S4`—(A = B), c = sin A <br />13 �79 <br />a, b, C A, B, c A+B=180°— G', tan NAI—B)= a—b) tan! �A , B) <br />.G8 yc + <br />•e sin C a b <br />�� / rin A. <br />a, b, c A, B, C s=a+2+c,sin?.A= `�'.`•^b a—c) <br />-5 77^ <br />�T /¢D /•t 9B `�!S ,22 j b_ sin?B=1j(a—a}ts—c) G'=150°—(A+B) . <br />a+b,+c �. <br />a, b; 'c• 'Area s = 2 <br />J , urea = 1.. ,(s—a (.3—b) (s—c <br />f i b e sin A <br />C1 g 7 A, b, c Area area = 2 <br />y •� ;� l !o: {•y <br />a2 sin B sin C <br />6 t'A 1 B, C,a Area area = 2 sin A <br />�arr 'fT e I' REDUCTION TO HORIZONTAL <br />73 r 1 �� 1 Horizontal distance=SGape distance multiplied by the <br />cosine of the verticalan ie. Thus: slope distance=319.4ft. <br />e t __ staff Vert. angle=51 10r. Fnom Table, Page IX. cos 51 lor= <br />(Q yi 0 h 9959. Horizonlal distance=319.4X.9959=315.09 ft. <br />�i :?� .. e ea�oP n¢le tz Horizontal distance' a1so=Slope distance minus slope <br />distance times (1—cosine of vertical angle). With the <br />same figures as in the Freceding example, the follow - <br />Horizontal distance ing result is obtained. Ccsine 50 101=.9959.1—.9959=.0041. <br />0 319.4X.0011=1.31. 319.4-1..31=318.119 ft. <br />When the rise is known; the horizontal distance fx approximately:—the slope dist- <br />- ance less the square of the rise divided by twice the slope distance. Thus: rise=l4 it., <br />- - slope distance=_302.6 ft. Horizontal distance=302.6— 114 X 14 =302.6-0.3.2=302.28 ft. <br />f tti P'X 302 6 <br />NAGE In -U. B. A. V <br />