Laserfiche WebLink
- + <br />TRIGONOMETRIC"FO:Ril"fUL <br />R'�F - ,�i`i+.�Y�2r•- �.�j� _ � q.� �. �J • /,e} 7 i � t.� Y � � a LE 6 <br />e"s . C ` --- Ri hi Triangle Obliyu.e= Triangles ��1 3- <br />�: Solution of Right Triangles f <br />?� µ $��..• j tJ rr' ��/ �f . 4� s % i� �6". = ,: �, Y` For Angle A _ ;sin a i, cos = b ; tan = a ,'coat = , sec = cosec = <br />a' <br />/.. ty "'' - .: '� % l Given ' 7ec iuired�i a <br />f%3 37 i, a f L' <br />Q' b tf• .13 ,c tan A =cot T; c = y/a,s 1 - F- <br />Z?�_ry 'A; B, b sink. �=cos B,b—�✓[c+a.)(c—a) =c �1—ate <br />_.. „ _� '��. dam,/ . �•� .- _ �. � � v _ ; - .. <br />'- Ai a ;13;`;b,.o •-B=90°—A, b = acof4,c= rz <br />• 1 , y•� sin A. <br />�.—G•r r -- - �: A, b 73,•a, c 8=90°—A,a btanA, <br />� . cos A. v <br />A;a B, a, b- 8.-90°—�,a=csin l b=ccosA, `� f?�:_• <br />Solution of Oblique Triangles <br />fcr, Given Required <br />a sin JV , a sin C s <br />A, B, a : b c, C b. = stn A G = 18D —(A -� B) c = sin A <br />.-� Z b sin .1 a sin C r �r <br />/y A... 7 k t d, a, L . ]3, o, .0 4 sin B= C—:1;$0°—(A t B), c = <br /># a sin A L r <br />3.3 - �� _ i a b C 1; B, o A+B=180°= C, tan. (A--i3)= a—b) tan (A+B}/ ,l ` <br />/ �✓ q p r- 6g # ' <br />a sin C a b ' <br />f <br />sin A �. <br />�r Y •.^ " �o� i?`-'.^� .- - '� Sr �' a, b; C A, 2 <br />sin '.'L_,1 <br />.:� F; <br />sin'I3—_ <br />Area s=a+h+c, area <br />: <br />b c sin 1 <br />j,5r S cy % �— �, . b c Area — <br />• / G, / fe - _- "' area <br />� 2 <br />a'sin Z; sin {'f <br />"-. <br />d,B,C,a Area area= 2sinA'7..3 <br />REDUCTION TO 'HORIZONTAL x 7 <br />�i! ..:x•: t .," ��� -, � <br />' '3oriaontal distance= Slope distance multiplied by the <br />cosine oftheverticalangle.Thus: slope distance -319.4 ft. <br />i, .- t y YI/ e atst�rce. Vert. <br />e69aHarizonYal From <br />Table,319.499� efLIX. cos�� la <br />7 �fig1e Horizontal distance .also='lope distance minus slope <br />t <br />. . / r x _ A� V �Y distance times (1-cosine of vertical angle). With the <br />�,` -gsame figures as iu the preceding example, the follow- <br />/ r / � f ing result is obtained- Cosine 5° 10'=.9959.1-.9959=.0041. <br />t .� Horizontal distance <br />--'' � ' '� ' 319.4X.0041=1,31. 319. tl-1.31=318.03 ft. <br />- <br />When the rise is known, the horizontal distance is approximately:-the slope dist- <br />4 <br />ist- <br />ance less the square of the rise divided by t)viee the slope distance. Thus: rise=l4 it., <br />slope distance=302.8 ft, Horizontal distance=302:4'x- <br />14X 14 =302.0-0.32=302.28 ft. <br />2 X 3026• <br />MADE IWU. S.A. <br />