Laserfiche WebLink
.. I Sr <br />H,I ; <br />za <br />sta , 01 <br />Ik rp aA3' <br />� <br />l <br />o <br />1l c( <br />¢ r7 <br />oaS,�l7 <br />P, <br />/.77 <br />e, ¢,Z <br />1. a <br />� a <br />_ <br />4 <br />Ti- *1 <br />Y" <br />der <br />_ <br />3•I7 <br />!�7 7— <br />i <br />7 wP- -- <br />�d _ <br />5, <br />.c <br />?47 <br />/a2. -ca <br />jai{ C. <br />CURVE TABLES. <br />• Published by KEUF'FEL 8& ESSER CO, <br />HOW TO USE CURVE, TABLES. <br />Table 1. contains Tangents and Externals to a 1° curve. Tan. and <br />Ext. to any other radius may be found nearly enough, by dividing the Tan, <br />or Ext. opposite the given Central Angle by the given degree of curve. <br />To find Deg. of Curve, having the Central Angle and Tangent: <br />Divide Tan. opposite the given Central Angle by the given Tangent. <br />To find Deg..of Curve, having the Central Angle and External: <br />Divide Ext. opposite the given Central Angle by the given External. <br />To find Nat. Tan. and Nat, Ex. Sec. fox any angle by Table L: Tan, <br />or, Ext. of twice the given angle divided by tlhe radius of"a P curve will <br />be the Nat. Tan, or Nat. Ex. Sec. <br />EXAMPLE. <br />Wanted a Curve with an Ext. of about 12 ft. Angle <br />of Intersection or I. P. =23' 20` to the It, at Station <br />542+72: <br />Ext, in Tab. T opposite 23° 20'= 120.87 <br />120.87-12=10.07. Say a lo' Curve. <br />Tan. in Tab. I opp. 23° 20` 1183.1 <br />1183.1-10 =118.31. <br />Correction for A. 23° 20' for a 10' Cur. =0.16 <br />118.31 x-0.16 =11.8.47 =corrected; <br />Tan <br />(If corrected Ext. is required find 1n same *ay) <br />Ane. 23°20'=23.33°-10-2.3333=L. C. <br />2° 199'=def. forsta. 542 1. P. :sta. <br />542-1 72 <br />40491 a' _ « -1-50 Tan, = <br />70 19z`= a rr r, 1 .18.47 <br />a 543 <br />004911= 13. C. = st.7. 541 +5T53a rr rc <br />350 <br />+ LC = 2 .33.33 <br />100-53.53=46.47X3'(deef. for 1 t. of 543+86.86 <br />Cur.) 543 6 <br />2° 19a'=def, for sta. 542. <br />Def. for 50 ft. =2° 30' for a 10° Curve. <br />Def. for 36.86 ft. =1° 50j' for a 10° Curve. <br />