Laserfiche WebLink
VIIT ` <br />TABLE II. - Radii, Ordinates -find Deflections. Chord =100 ft. <br />Deg. <br />- <br />-Radius <br />- <br />hfid <br />Ord. <br />Yan:y <br />Diet. <br />•Def: <br />Dist. <br />- <br />sfnr <br />Deg. <br />R�d�� <br />Mid. <br />O:d. <br />Tea <br />1)ist, <br />Dcf, <br />hist. <br />Dfcr <br />1 Ft. <br />2 <br />ft. <br />It <br />ft. I <br />ft. <br />181.39 <br />1°59' <br />ft.ft.•• <br />3°10' <br />It. <br />it. <br />34° <br />0'10' <br />34377. <br />.036 <br />,145 <br />.291 <br />0.05 <br />71 <br />819.0 <br />1.528 <br />6,105 <br />12.21 <br />2.10 <br />;20 <br />17189. <br />.073 <br />.291 <br />,582 <br />0.10 <br />20' <br />781.8 <br />.1 .600 <br />6.395 <br />12.79 <br />2.20 <br />30 <br />11459. <br />.109 <br />.43G <br />,873 <br />0.15 <br />30 <br />764.5 <br />1.637 <br />6.540 <br />13.08 <br />2.25 <br />,•40 <br />8594.4 <br />.145 <br />.5S2 <br />1.164 <br />0.20- <br />40 <br />747.9 <br />1.673 <br />.6.685 <br />13.37 <br />2.30 <br />50 <br />6375.5 <br />.182 <br />,.727 <br />•1.454.0 <br />2,, <br />8 <br />716.8 <br />1.746 <br />6.97G <br />13.95 <br />2,40 <br />1 <br />5729-0 <br />.218 <br />.873 <br />1.745 <br />0.30 <br />20 <br />688.2 <br />1.819 <br />7.2GG <br />14,53 <br />2.50 <br />10 <br />4911.2 <br />.255 <br />1.018 <br />2.036 <br />0.35 <br />30 <br />674.7-1.855 <br />5° 23' <br />7:411,14.82 <br />104.14 <br />2.55 <br />20 <br />4297.3 <br />.291 <br />1.164 <br />2.327 <br />0.40 <br />40 <br />061.7 <br />1.892 <br />7.5,56 <br />15,11 <br />2.60 <br />. X30 <br />3819,8 <br />,327 <br />11309 <br />2:618 <br />0.45 <br />9 <br />637,3 <br />1:965 <br />7:S46 <br />15.69 <br />2.70 <br />40 <br />-3437.9 <br />.U4 <br />1.454 <br />2:909 <br />0.50 <br />20 <br />614.G <br />2.037 <br />8.136 <br />16.27 <br />2.80 <br />50 <br />3125:4 <br />,400 <br />1.600 <br />3.200 <br />0,55 <br />30 <br />603.8 <br />2.074 <br />8.281 <br />16.56 <br />2.85 <br />E <br />.2864.9 <br />.436 <br />1.745 <br />3:490 <br />0.60 <br />40 <br />593.4 <br />2.110 <br />8,426 <br />16.85 <br />2.90 <br />10 <br />2644,6 <br />,473 <br />1"891 <br />3.781 <br />0.65 <br />10 <br />573.7 <br />2.18.3 <br />8.716 <br />17.43 <br />3.00 <br />20 <br />2455.7 <br />.509 <br />2,030 <br />4.072 <br />0.7030 <br />546.4 <br />2.29'2 <br />9.150 <br />15.30 <br />3.15 <br />30 <br />2292.0 <br />.545 <br />2.381 <br />4,363 <br />0.75 <br />ll <br />521.7 <br />2.402 <br />9.liS5 <br />19.16 <br />3.30 <br />40 <br />2148,8 <br />.582 <br />2.327 <br />4.654 <br />0.80 <br />30 <br />499.1 <br />2.511 <br />10,02 <br />20.04 <br />3.45 <br />50 <br />2022.4 <br />.618 <br />2,472 <br />4.945 <br />0.85 <br />171 <br />478.3 <br />2.020 <br />10,45 '20.01 <br />3.60 <br />$ <br />1910.1 <br />x:655 <br />2:618 <br />-5.235 <br />0.90 <br />30 <br />459.3 <br />2:730 <br />10,89 <br />21.77 <br />3.75 <br />10 <br />1809.6 <br />X91 <br />2.763 <br />5:520 <br />0.95 <br />13 <br />441,7 <br />2,839 <br />11.32 <br />22.64 <br />3.90 <br />20 <br />1.719.1 <br />'`.727 <br />2:908 <br />51817 <br />1.00 <br />30 <br />425.4 <br />2.940 <br />11,75 <br />23.51 <br />4.05 <br />30 <br />1637.3 <br />.761 <br />3.054 <br />6,108 <br />2. 05 <br />14' <br />410:3 <br />3.058 <br />12.18 <br />24.37 <br />4.20 <br />40, <br />1562.9 <br />.800 <br />3.199 <br />6.398 <br />1.10 <br />30 <br />356.2 <br />3.108 <br />12,62 <br />25.24 <br />4.35 <br />50 <br />1495.0 <br />.836 <br />3.345 <br />'.G.G89 <br />1.15 <br />'15 <br />383.1 <br />3.277 <br />13,05 <br />'1.50 <br />d <br />1432.7 <br />.873 <br />3,490 <br />6.980 <br />1.20 <br />30 <br />370.8 <br />3.387 <br />.26.11 <br />13.49.,26.9'7 <br />4.65 <br />10 <br />1375.4 <br />.909 <br />3.035 <br />7.211 <br />1.25 <br />1G <br />359.3 <br />3.496 <br />13,92 <br />27.84 <br />4.80 <br />20 <br />1322.5. <br />.945 <br />3.718 <br />71561 <br />1.30 <br />30 <br />348.5 <br />3.606.14:35 <br />,28,70 <br />4.95 <br />30 <br />127.3.6 <br />.982 <br />3.920 <br />7<852.1.35 <br />17 <br />338.3 <br />3.716 <br />14.78 <br />29,56 <br />5.10 <br />40' <br />•1228.1 <br />1.018 <br />4.071 <br />.8,143 <br />1.40 <br />'18 <br />319.6 <br />3:935 <br />15,64 ,81.29 <br />5.40 <br />50 <br />1185.8 <br />1.055 <br />4.217 <br />8.433 <br />1.45 <br />19 <br />302.9 <br />4.155 <br />16,51 <br />33.01 <br />:5.70 <br />6 <br />.1146.3 <br />1.091 <br />4.362 <br />8.724 <br />1.50 <br />20 <br />287.9 <br />4.374 <br />17.37 <br />34.73 <br />6.00 <br />10 <br />1109.3 <br />1.127 <br />4.507 <br />9:014 <br />1.55 <br />21 <br />274:4 <br />4.594 <br />18.22 <br />36.44 <br />G"30 <br />20 <br />1074.7, <br />1.164.4.653 <br />9.305 <br />1.60 <br />22 <br />262.0 <br />4.814 <br />19.08 <br />38.16 <br />6.60 <br />30 <br />1042.1 <br />1.200 <br />4.798 <br />'9:596 <br />1.65 <br />23 <br />250.8 <br />5.035 <br />19.94 <br />39.87 <br />G.90 <br />40 <br />1011:5 <br />.1.237 <br />4.943 <br />9.886 <br />1.70 <br />24 <br />240.5 <br />5.255 <br />20.79 <br />4.1.58 <br />7.20 <br />60. <br />932.6'1.273 <br />5.058 <br />19.18 <br />1.75 <br />25 <br />231.0 <br />5,476 <br />21.64 <br />7.50 <br />6 '- <br />955.4 <br />1.309 <br />5.234 <br />.10.47 <br />1.50 <br />"26 - <br />222.3 <br />5.697 <br />.43.28 <br />22.50 <br />44.99 <br />7.S0 <br />30' <br />929.6 <br />1.346 <br />5.379 <br />10.76 <br />1.85 <br />27 <br />214.2 <br />5.918 <br />23.35 <br />46.69 <br />5,10 <br />20 <br />905.1 <br />1.382 <br />5.524 <br />11.05 <br />1.90 <br />28 <br />206.7 <br />6,139 <br />24.19 <br />48.38 <br />8.40 <br />30 <br />881.9 <br />1.4FS <br />S.G69 <br />11,•34 <br />1.95 <br />29 <br />199.7 <br />0.360 <br />25.04 <br />50.07 <br />8.70 <br />40 <br />859.9 <br />1.455 <br />5.814 <br />11.63 <br />2.00 <br />30 <br />193.2 <br />6.583 <br />25.88 <br />51.76 <br />9.00 <br />Tho iniddlo ordinate in inches for any cord of length (C) is equal to 0012 C' <br />multiplied by the middle ordinate taken from the above table. Thus, if it <br />desired to bend a 30 ft. rail to fit a 10 degree curve, its middle ordinate should <br />be .0012X900X2,183 or 2.36 inches. <br />TABLE III. Deflections for Sub Chords for Short Radius Curves. <br />Degree <br />of <br />Curve <br />Radius <br />59 <br />A sub chord <br />R = sin of i def. angle <br />Length <br />of are <br />for 100 ft. <br />sin. I def. ago. <br />12.5• Ft. <br />15 Ft. <br />20 Ft. <br />25 Ft. <br />30° <br />193.18.L7' <br />.5500 <br />2 <br />2°' 58'---- <br />,. _30.43' <br />101.15 <br />32° <br />181.39 <br />1°59' <br />2025P <br />3°10' <br />3°58' <br />101.33 <br />34° <br />171.01 <br />2° 06' <br />2°.33' <br />3° 21' <br />4' I2'. <br />JOI , 48 <br />_36° <br />161.810 <br />2° 13' <br />2° 41'- <br />3' 33' <br />4° 26' <br />1o1.66 <br />=380- <br />153.58 <br />20 20' <br />2° 49' <br />: 3° 44 <br />4° 40 <br />101.85 <br />46° <br />346-19 <br />2° 27' <br />2° 57' <br />3° 55 <br />4° 54' <br />1o2. o6 <br />42' <br />139.52 <br />2' 34'' <br />3° 05' <br />4° 07 <br />5'08' <br />102.29 <br />44° <br />133.47 <br />2° 41` <br />3° 13' <br />4° 18' <br />S' 22' <br />1o2.53 <br />46° <br />127,97. <br />2° 48 <br />3° 21' <br />4° 29' <br />5°'36' <br />102,76. <br />48° <br />122, 92 <br />2°"55' <br />3° 29' <br />4° 40' <br />5° 50' <br />103.00 <br />50° <br />118.31 <br />3° 02'. <br />3° 38'4° <br />51' <br />6° 04' <br />103.24 <br />520 <br />114.o6 <br />3° 09. <br />3° 46, <br />5° 02' <br />6° 17,. <br />103,54 <br />54° <br />110..11' <br />3° f6' <br />3° 54' <br />;° 13' <br />6° 31' <br />103.84 <br />56° <br />1o6.5o <br />3° 22, <br />4° 02' <br />5° 23' <br />6° 44' <br />104.14 <br />58° <br />103.14 <br />3°29, <br />4°10' <br />5°34' <br />6° 57' <br />704.43 <br />60°. <br />100.00 <br />3° 35''' <br />4° 18' <br />5° 44' <br />7° 11, <br />•104.72 <br />.IX , <br />CURVE FORMULAS <br />T R tan I R= 'C cot. _r' I chord$ <br />T jD tan I Chord def.: = R - <br />Sin, } ll50 <br />Sin. . <br />Si .1 Sin.D <br />D = = No. chords <br />5a tan a I E =Rex. sec 1 D <br />a Ta =T tan J I Tan. def.= chord def. <br />The square of any distance, divided by twice the .radius, will equal <br />the distance from tangent to curve, very nearly.. <br />To find angle for a given distance and defection. <br />Rule I. Multiply the given distance by .oi745 (def. for i° for i It. <br />see Table II.), and divide given deflection by the product. <br />Rule 2.. Multiply given deflection by 57.3; and divide the product by <br />the given distance. <br />To find deflection for a given angle and distance. Multiply the angle <br />by,.oi745, and the product by the distance. <br />GENERAL DATA <br />RFGHTtANQLE TRIANGLES. Square. the. altitude, divide by twice the <br />base. Add quotient to base for hypotenuse. <br />Given Base zoo, Alt. 10.102=200=.5. 100-}-.5=100.5 hyp. <br />Given Hyp; zoo, Alt. 25:25-'-200=3.I2�. zoo-3.12$=96.875=Base. <br />Error in.flrst example, .002; .in last, .045. <br />To finch Tons of Rail in one mile of trach:: - multiply wei„ht per yard <br />-by. ii, and divide by 7: <br />LEVELING.- The correction for•'curvztvre and refraction, in feet <br />and decimals of feetis.equal to 0.574d', where d is the distance in miles. <br />The' correction for cul attire alone is closely; jd=,.. The combined cor- <br />rection -is negative. <br />d{ <br />PROBAeL>_ ERROR. If ; d ; d., etc. are the discrepancies of various <br />results from the mean, and if Zd'=the sum of the squares of these differ- <br />ences and n=the number of observations; then the probable error of the <br />mean -+0.6745 fid$ <br />1 n (n-1) <br />SOLAR EPEEMERIs. Attention'is called to the Solar Ephemeris for <br />the current year, published by Kcuflel & Esser Co-, and furnished free of <br />charge upon request, which is 34x5.1 in., with about 90 pages of data very <br />useful to the Surveyor,; such as the adjustments of transits, levels and <br />solar attachments; directions and tables for determining the meridian <br />and the latitude from observations on the sun and Polaris; stadia meas- <br />urements; magnetic declination; arithmetic constants; English and Metric <br />conversions; trigonometric formulas; Natural andLogarithmic. Functions; <br />and Logarithms of Numbers. <br />TABLE IV. - 111inutes in Decimnis of a Decree. <br />1' <br />•.0167 <br />.11' <br />.1833 <br />21' <br />.3500 <br />31' <br />5167 <br />41' <br />.6533 <br />51' <br />.5500 <br />2 <br />.0333 <br />12 <br />.2000 <br />22 <br />.3667 <br />32 <br />15333 <br />42 <br />.7000 <br />62 <br />.8667 <br />b - <br />0500 <br />13 <br />.2167 <br />23 <br />.3833 <br />33 <br />.5500 <br />43 <br />,7167 <br />53 <br />.8833 <br />4 <br />.0667 <br />14 <br />.2333 <br />24 <br />.4000 <br />34 <br />5667 <br />44 <br />,7333 <br />64 <br />.9000 <br />6 <br />.0533 <br />.15 <br />.2500 <br />25 <br />.4167 <br />35 <br />•5833 <br />45 <br />.7500 <br />06 <br />.9167 <br />G <br />1000 <br />1G <br />2067 <br />26 <br />.4333 <br />36 <br />6000 <br />46 <br />,7667 <br />56 <br />.9333 <br />? <br />1167 <br />17 <br />Y2833 <br />21 <br />.4500 <br />37 <br />6167• <br />47 <br />.7833 <br />57 <br />9500 <br />8 <br />.1333 <br />18 ','.3000 <br />28 <br />.4GG7 <br />3S <br />•G333 <br />48 <br />.5000 <br />58 <br />.0667 <br />9500 <br />10 <br />•3167 <br />29 <br />.4833 <br />39 <br />•6500 <br />49 <br />,8167 <br />59 <br />.9533 <br />10 <br />.1667 11 <br />20 <br />,3333 <br />30 1 <br />.5000 <br />11 40 <br />1 .6667 <br />50 <br />.8333 <br />60 <br />11.0000 <br />• <br />TADLB V. - Inches in Decimals of a Foot. <br />1-16 <br />3-32 <br />); <br />5-16 <br />/e <br />o <br />/a <br />.0052 <br />.0078 <br />.0104 <br />,01.56 <br />0208 <br />.0260 <br />.]113 <br />.0117 .0521 <br />.0625 <br />.0729 <br />1 <br />2 <br />3 <br />4 <br />5 <br />6 <br />1 <br />S 9 <br />10 <br />11 <br />.0833 <br />.1667 <br />.2500 <br />.3333 <br />.4167 <br />.5000 <br />.5833 <br />.6667 .7500 1 <br />.8333 <br />1 .9167 <br />