Laserfiche WebLink
VIII <br />TABLE II. - Radii, Ordinates and•Deflmtions. Chord =100 ft. <br />Deg. <br />Radius <br />Mid <br />Qrd. <br />Tan. <br />Dist, <br />- Dd, <br />Dist. <br />(or <br />I Pt <br />Deg. <br />Radius <br />Itifid. <br />Ord. <br />Tan• <br />Dist, <br />Dd. , <br />Dist, <br />Deet, <br />1 pt. <br />=° 17 <br />ft. <br />ft. <br />it. <br />it. <br />! <br />1°59' <br />1t, <br />It: <br />It, <br />ft. <br />340 <br />0°10 <br />34377. <br />.036 <br />.145 <br />.291 <br />0.05 <br />- 7' <br />819.0 <br />1.528 <br />fi.105 <br />12.21 <br />2.10 <br />20 <br />17189. <br />.073 <br />.291 <br />.582 <br />0.1.0 <br />20' <br />781.8 <br />1.600 <br />6.395 <br />12,79 <br />2.20 <br />-30 <br />11459. <br />.I09 <br />.436. <br />,873 <br />0,15 <br />30 <br />764.5 <br />1.6.37 <br />0,540 <br />13,03 <br />2.25 <br />40 <br />8594.4 <br />.145 <br />.582 <br />1.164 <br />0.20 <br />40 <br />747.9 <br />1.673 <br />6.685 <br />13.37 <br />2.30 <br />-50 <br />_6875.5 <br />.182_.727 <br />3° 29' <br />,1,454 <br />0.25 <br />8 <br />71G.8,1.746 <br />118,31 <br />6.076 <br />13.95 <br />2.40 <br />1 <br />5729.6 <br />.218 <br />,873 <br />A. 745 <br />0.30 <br />20 <br />G38.2 <br />1.819 <br />7.260 <br />14.53 <br />2.50 <br />10 <br />4911.2 <br />.255 <br />1.018 <br />2.036 <br />0.35 <br />30 <br />G74.7 <br />1.855 <br />7,411 <br />14.82 <br />2.555 <br />20 <br />4297.3' <br />.291 <br />1.164 <br />2.327 <br />0.40 <br />- 40 <br />G61.7,1.892 <br />3° 31 <br />7.556 <br />15.11 <br />2.60 <br />30 <br />3819.8 <br />.327 <br />1.309 <br />-2.6118 <br />0.40 <br />9 <br />637.3 <br />1.965 <br />7.846 <br />15.69 <br />2.70 <br />40 <br />3437.9 <br />,30t <br />1,454 <br />2.900 <br />MO. <br />20 <br />614. 111 <br />2.037 <br />8.136 <br />16.27 <br />2.80 <br />50 <br />3125.4 <br />.400 <br />1.600 <br />3.200 <br />o.55 <br />30'603.8 <br />2.074 <br />8.281 <br />16.56 <br />2.85 <br />8 <br />2864.9 <br />.436 <br />1.745 <br />3:490 <br />0.60 <br />40 <br />593.4 <br />2:110 <br />8.426. <br />16.85 <br />2.90 <br />10 <br />2644.G <br />.473 <br />1.891 <br />.3.781 <br />0.65 <br />10 <br />573.7 <br />2.183 <br />6.716 <br />17.43 <br />3.00 <br />20 <br />2455,7 <br />.509 <br />2:036 <br />4.072 <br />0.70 <br />30 <br />546.4 <br />2.292 <br />9.150 <br />13.30 <br />3.15 <br />30 <br />2292.0 <br />.545 <br />2.181 <br />4.363 <br />0.75 <br />11 <br />521.7 <br />2.402 <br />9.585 <br />19.16 <br />3.30 <br />40 <br />2148.8 <br />,582 <br />2,327 <br />4.651 <br />0.80 <br />30 <br />499.1 <br />2.511 <br />10.02 <br />20.04 <br />3.45 <br />50 <br />.2022,4 <br />,618 <br />2,472 <br />4.945 <br />0.85 <br />11, <br />,478,3 <br />2.620 <br />10.45 <br />20.91 <br />3.60 <br />3 _ <br />1910.1 <br />.655 <br />2:618 <br />5.235 <br />0.90 <br />30 <br />-1:;9:3 <br />2.730 <br />10.89 <br />21.77 <br />3.75 <br />10. <br />1802.6 <br />.691 <br />2.763 <br />5.526 <br />0.95 <br />'13 <br />441.7 <br />2:839 <br />11.32 <br />22. G3 <br />3.90 <br />20 <br />17(9.1 <br />:727 <br />2.903 <br />5.817 <br />1,00 <br />30 <br />425.4 <br />2.949 <br />11.75 <br />23.514.05 <br />30 <br />1637:3 <br />.704 <br />3.054 <br />6.108 <br />1.05 <br />14 <br />410.3 <br />3:058 <br />12.18 <br />24.37 <br />4.20 <br />40 <br />1562.9 <br />.800 <br />3,199 <br />6.398 <br />1.10 <br />30 <br />306.2 <br />3.168 <br />12.62 <br />27.24 <br />4.35 <br />50 <br />1495.0.836 <br />3,343 <br />6.689 <br />1.15 <br />15 <br />383.1 <br />3.277 <br />1.3.05 <br />20.11 <br />4.50 <br />IL '-1432.7 <br />,873 <br />3.490 <br />6.980 <br />1.20 <br />30 <br />370.8.3.387 <br />'13.49 <br />26.97 <br />1,65 <br />I0 <br />1375.4 <br />.909 <br />3.635 <br />7.271 <br />1.25 <br />16 <br />359.3 <br />3,406 <br />13.92 <br />27.84 <br />4.80 <br />.20 <br />.1322.0 <br />,945 <br />3,713 <br />'7.561 <br />1.3030 <br />348,5 <br />3-606 <br />14.35 <br />28.70 <br />-1.95 <br />30 <br />1273.6. <br />.982 <br />3.926 <br />7.852 <br />1.35 <br />17 <br />338.3 <br />3.716 <br />14.78 <br />29.55 <br />:1.10 <br />40 <br />1228.1 <br />1.018 <br />4.071 <br />8.143 <br />1.40 <br />18 <br />319.6 <br />3.935 <br />15.64 <br />31.29 <br />5.40 <br />50 <br />1185.8 <br />1.055 <br />4.217 <br />,8.433 <br />1.45 <br />19 <br />302.9 <br />4.155 <br />16.51 <br />33.01 <br />1.70 <br />b <br />1146.3 <br />1.091 <br />4.362 <br />8.724 <br />1.50 <br />20 <br />287.9 <br />4.374 <br />17.37 <br />30.73 <br />6.00 <br />10 <br />_1109.3 <br />1,127 <br />4.507 <br />9.014 <br />1. 55,, <br />21 <br />274.4 <br />4.594 <br />1S.22 .30.44 <br />6.30 <br />,20 <br />1074:7 <br />1.164'4.653 <br />9.305 <br />1.60. <br />22 <br />'262.0 <br />4.814 <br />19.OS <br />38.16 <br />61.60 <br />30 <br />1042.1 <br />1,200 <br />4.798 <br />9.596 <br />1.65 <br />23 <br />250.8 <br />5,035 <br />19.94 <br />39.87 <br />6.90 <br />,40 <br />I011.5 <br />1.237 <br />4.943 <br />9.886 <br />1.70 <br />24 <br />240.5 <br />5.255 <br />20.79 <br />41.53 <br />7.20 <br />;50 <br />_982.6 <br />1,273'5.088 <br />10.18 <br />1.75 <br />25 <br />231.0 <br />5.476 <br />21.64 <br />43,23 <br />7.50 <br />6 • - <br />955.4 <br />1.309 <br />5.234 <br />10.47 <br />1.80 <br />20 <br />222.3 <br />5.697 <br />22.50 <br />44.99 <br />7 -SO <br />10, <br />929,6 <br />1.346 <br />5.379 <br />10.76 <br />1.85 <br />27 <br />214.2 <br />5.918 <br />23.3.5 <br />40.69 <br />S.10 <br />20 <br />905,1 <br />1,382 <br />5.524 <br />11.05. <br />1.90 <br />26 <br />206.7.6.139 <br />24.19 <br />48.35 <br />S.40 <br />30 <br />881.9 <br />1.418 <br />5.669 <br />11.34 <br />L 9:5 <br />29 <br />199.7'6.360 <br />25.04 <br />50.07 <br />S. <br />40 <br />1 859.9 <br />1.455 <br />5,814.11,63 <br />2.00 <br />30 <br />193.2 <br />6.583 <br />25.88 <br />5.76 <br />9.00 <br />The middle ordinate in inches for any cord of length QC) is equal to .0013 W <br />multiplied by the middla ordinate taken fromtho above table. Thee, if it <br />desired to bend -a 30 ft. rail to fit a 10 degree curve, its middle ordinate should <br />be .0012X000X2.183 or 2,36 inches. <br />TABLE III, Deflections for Sub Chords for Short Radius Curves. <br />Degree <br />of - <br />Curve <br />liadius <br />59 <br />y§ sub chord_ sin Of, def,.angle <br />R <br />Length <br />of arc <br />for 100 ft. <br />sin, ; def. ang. <br />12.5 Ft. <br />15 Ft. <br />20 -Ft.--]-25 <br />Ft. <br />3o!,- <br />193•`18 <br />- i° 51' <br />=° 17 <br />2° 55` <br />3. 43` <br />101.15 <br />32° <br />181.39 <br />1°59' <br />20.25 <br />3°l0' <br />3° 58' <br />101,33 <br />340 <br />171:01_ <br />2° 06` <br />2° 33' <br />3° 21 <br />4° Iz' <br />101,48 <br />u-36° <br />161. So <br />2° 13 <br />2° 41' <br />3 •33': <br />40 26` <br />1oi.66 <br />-38- <br />153-.58 <br />2° 20'. <br />2° 49' <br />3e 44' <br />4° 40' <br />101,85 <br />40° <br />146.19. <br />2° 27' <br />2° 571• <br />3° 55' <br />4° 54" <br />Io2. o6 <br />42' <br />139.52 <br />'°'34' <br />3° 05': <br />4' 07' <br />5° 08' <br />102.24 <br />44' <br />133.47 <br />20 41' <br />3° 13 <br />4° is, <br />S° 22' <br />IO2.53 <br />46° <br />1127:97 <br />2° 48' <br />3° 21' <br />4° 29' <br />S° 36' <br />102.76 <br />48° <br />122.92 <br />2° 556 <br />3° 29' <br />4° 40' <br />5° 50' <br />103.00 <br />5o° <br />118,31 <br />3° 02' <br />3° 38' <br />4° 51' <br />6° 04' <br />103.24 <br />52° <br />114.06 <br />3° 09 <br />30 46' <br />5° 02' <br />6° 11 <br />103.54 <br />54° <br />110.11 <br />3° 16' <br />3° 54' <br />S° 13' <br />61 31 <br />103-84 <br />56° <br />106.50 <br />3° z2' <br />4° 02' <br />5° z3' <br />6° t4' <br />501.14 <br />58° <br />103.14 <br />3° 29` <br />4° lo' <br />5° 34' <br />6' 57' <br />104.43 c.. <br />60° <br />100.00 <br />3° 31 <br />4° 18' <br />5° 44` <br />7° 11' <br />104.7.2. <br />IX} <br />CURVE- FbRMULAS <br />T = R tan 8 I chord' <br />5o tan>J'I- ' : - -R = T cot. -s I Chord def. = R <br />T _ Sin: ll <br />1 <br />Sir... 8'D. = 5o Sm. , D No. chords I <br />R E= R eN:, sec t I, D <br />5o tan ; I <br />Sia: 11). = ` T E = T tan 8 I Tan. def.= z chord def. <br />The square of 'any distance, divided by tivice the radius,' will equal <br />the distance from tangent to curve, very nearly.. <br />To find angle for a given distance and deflection, <br />Rulc'l. 'Multiply" the given distance by .01745 (def. for r° for i ft.' <br />see Table II.), and divide given deflection. by the product. <br />Rule 2. "Multiply given deflection by 57.3, and divide the product by <br />.the given distance. . " - <br />To find deflection for a given angle and distance. 1ltfvltiply the angle <br />by .oi745, and the product by the distance. - <br />.GENERAL DATA <br />RIGHT ANGLE TRIANGLES. . Square the altitude, divide by twice the <br />base. Add_ quotient to base for hypotenuse. <br />Given Base loo, Alt. 10-102-200=.S. T00+.5=10e.5 hyp, <br />Given Hyp. roo,.Alt.?g:zsa..200=3.12$. 100-3.125=96.875=13ase. <br />Error 1n first example, .002 ; in last, .045. <br />To find Tons of Rail, in ono mile of track: multiply weight per yard <br />_by 11, and divide by q. <br />LEVELING. The correction for'curvature and refraction, in feet <br />and decimals of feet is equal _to 0.574'd3 where d is the distance in miles. <br />The correction for curvature alone is closely, jd The combined cor- <br />rection is negative. <br />PROBABLE ERROR. If d„ d,, d,, etc. are the discrepancies. of various <br />results from the mean, and if �,dz=the sum of the squares of these differ- <br />ences and n=the number of observations,'then the probable error of the <br />a <br />mesh= � O.G745�n n-1) , <br />.SOLAR EPIiEllt;itrs, Attention is called to the Solar Ephemeris for` <br />the current year, published by Keuffel,& Esser Co., and furnished free of <br />charge upon request, which is 81x58 in., with about 90 pages of data very <br />useful to the Surveyor; .such as the adjustments of transits, levels and <br />solar attachments; directions and tables for determining the, meridian <br />and the latitude from observations on the sun and Polaris; stadia meas- <br />urements; magnetic declination; arithmetic constants; English and -Metric <br />conversions; trigonometric formulas; Natural andLOgaiithmic Functions; <br />,and Logarithms of Numbers. <br />TAi3LE IV. - Minutes in Decimals of a Degree. <br />1' <br />,0167 <br />11` <br />.1833 <br />21' <br />.3500 <br />31' <br />:5IG7 <br />41' <br />.6833 <br />51' <br />.8500 <br />% <br />.0313 <br />.0333 <br />12 <br />.2000 <br />22 <br />.3667 <br />aa' <br />.5333 <br />49. <br />.7000 <br />62 <br />.8667 <br />.2 <br />3 <br />11 <br />.9167 <br />23 <br />.3833 <br />33 <br />.5500 <br />43 <br />.7167 <br />53 <br />.8833 <br />4 <br />.0500 <br />-.0667' <br />.13 <br />.2167 <br />24 <br />.4000 <br />34 <br />.5667 <br />-44 <br />,7333 <br />54 <br />.9000 <br />5 <br />.14 <br />15 <br />,2333 <br />2500 <br />25 <br />.4167 <br />33 <br />.5333 <br />45 <br />,7500 <br />55 <br />•9167 <br />6 <br />.0833 <br />.1000 <br />10 <br />,21367 <br />26 <br />.4333 <br />36 <br />:6000 <br />46 <br />.7667 <br />56 <br />57 <br />.9333 <br />7 <br />.1167 <br />17 <br />.2833 <br />27 <br />.4500 <br />37 <br />.0107 <br />47 <br />48 <br />,7833 <br />58 <br />-9500 <br />.9667 <br />B <br />1333 <br />18 <br />.3000 <br />28 <br />.4667 <br />38 <br />.6333 <br />49 <br />,°11110 <br />69 <br />.9833 <br />9 <br />.1500 <br />19 <br />,3167 <br />.29 <br />.4833 <br />39 <br />.0500 <br />fi6fi7 <br />50 <br />.8167 <br />GO <br />1,01100 <br />10 <br />.1667 <br />20 <br />1 .8333 <br />1 30 <br />i .50[30 11 <br />40 <br />,$333 <br />`I <br />TABLE V. - <br />Inches in Decimals of a Foot. <br />1-113 <br />.0052 <br />3-32 <br />.0078 <br />Y <br />.0104 <br />3-16 <br />.0156 <br />'4 <br />.0208 <br />0 113 <br />.02G0 <br />% <br />.0313 <br />�s <br />.01 .0521 <br />.Ofi25 <br />.0729 <br />r <br />,0333 <br />2 <br />:1607 <br />3 <br />.2500 <br />4 <br />.3333 <br />5 <br />.4167 <br />0 <br />.5000 <br />7 <br />.5833 <br />8 0 <br />.6667 .7500 <br />10 <br />.5333 <br />11 <br />.9167 <br />`I <br />