Laserfiche WebLink
i ✓•P�'9 <br />/pJ , 73 <br />3, i- <br />!oB � <br />�T GONOMETRIC 'FORMULA <br />B <br />c <br />a <br />A A <br />b C <br />rCAA b C � <br />Right'Triangle Oblique Triangles <br />Solution of Right Triangles <br />For'Angle •A, sin = c , cos = o , tan= b , cot = a , sec = cosec = a <br />Given Required a <br />i <br />¢,b A,B,c tan A=b=cot B,c= a2-47 b -=a`1 } a + <br />— — z <br />r ¢' c .4,B,b sinA=0a—cosB,b—�(c4a)(c—¢).= J1—ap oot <br />li. A, ¢ B, b, c B=90'—A, b = a cotA, c= a <br />sin A. <br />i A, b B, a, c B = 90'—A, a = b tan A, c = b 25 <br />cos A. <br />A, c . B, a, b I B = 90'—A, a = c sin A, b = c cos A, <br />I Solution of Oblique Triangles <br />t Given Required a sin B <br />4 A, B, a b, c, C b = sin A ' C = 180'—(A + B)., c = n A <br />b sin A a sin C <br />A, a, b B, c, C sin B.=a , C = 180°—(A -i- B), c = sin A <br />( <br />• ¢, b„ G A, B, c A -{-8=180o — C, tan _ (A—B)— tan z A+B)a + b , <br />a sin C <br />c sin A <br />v 2 a, b, c A., B,'C s_ry+2+c,.Sin'A <br />�• <br />oG <br />),C-180°—(A+B) <br />' <br />sin•'_.B=\I(• <br />ac <br />a+b+c <br />¢, b, a <br />Areas= <br />2 ,area = •� x(,�—a) s— 1 (d—c) <br />1 <br />Area <br />b c sin A <br />area = . <br />a2 sin B sin C <br />A; B; C, a <br />Area <br />area = 2 sin A <br />REDUCTION <br />TO HORIZONTAL <br />Horizontal distance=Slope distance multiplied by the <br />_ <br />t <br />cosineoftheverticalanale.Thus: slopedistance=3l9.4tt. <br />aty �3n°e <br />Vert. angle= 5' 10'. From Table, Page IX. cos 5' 101= <br />ea\epe <br />c 9959. Horizontal distance=319.4X.0959=318.09 ft. <br />" Horizontal distance also=Slope distance minus slope <br />t. hn�\e <br />x distance limes (1—cosine of vertical ankle). With the <br />4e <br />same figures as in the preceding example, the follow - <br />Horizontal distance <br />ing result is obtained. Cosine 5°l0'=.9959.1—.9'J59=.0041. <br />319.4X.0041=1.31. 319.4-1.31=31309 ft. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft., <br />slope distance=302.dft..IIorizontal <br />distance=302.6-14X14 =302.6-0.32=302.28 ft. <br />2 X 302.6 <br />.` '- <br />MACH IN V.B.A. <br />—�• <br />