Laserfiche WebLink
7- <br />12 2 <br />0 <br />TRIGONOMETRIC FORMULfE <br />B. B B <br />c a r.�c a c a <br />iAb CA b C�� C <br />fRight Triangle Oblique Triangles <br />Solution of Right Triangles <br />i s b a b c c <br />For Angle A. sin= e , cos = 0 , tan= 3 , cot = a , sec = b , cosec = a <br />Given Required a <br />tan A=L= cot B,c= a'=i z=a 1 } d, <br />a, c A, B, b sinA=G=cosB,b=V/ o+a)(c—a)=c�1—Q= <br />A, a B, b, c B=90°—A, b= a cotA, c= a <br />sin A. <br />b <br />b B, a, c 8=90°—A,a = btanll, r,= cosA. <br />I <br />A, c B, a, b _ B = 90°—A, a = c sin A, b = c cos A, <br />Solution of Oblique Triangles <br />Given Required <br />A, B, a b, c, C b = a sin B C = 180°—(A -)- B), c = a sin C <br />sin A sin A <br />b sin A Ctt sin C <br />A, a, b B; c, C sin B=. a ,=.180°—(A1 B),c= sin <br />f a, b, C A, B, c A+B=180°= C, tan ' (A—B)= (a—b) tan <br />a <br />- a sin C + <br />=sin A <br />a, b, c A., B, C s=a+2+c,sin-2A=I— <br />be <br />sin 4B=_N1(.r <br />- � <br />a, b, c Area s = 2 <br />bcsin A' <br />Area area = 2 <br />ii <br />a'- sin 13 sin C <br />A, B, C,.a Area " area = 2 sin A <br />REDUCTION TO HORIZONTAL <br />�. Horizontal distance=Slope distance multiplied by the <br />cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />y taoce Vert. angle=5° 101. From Table. Page IX. cos 50 10'= <br />` e bis 0 9959. Horizontal distance=319.4X.9959=318.09 ft.. <br />S1o0 ope <br />distan ettimesal t(1—cosine ofance �veaminustance <br />rtoe cl angle)1With lthe <br />l ye same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 511 101=.9959.1—,9059=.0041. <br />319.4X.0041=1.31. 319.4-1.31=318.09 It. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft., <br />slope distance=302.6 ft. Horizontal distance=3020— 14 X 14 =302.0-0.32=302.28 ft. <br />2 X 302.6 <br />- — UAD2 1j U. S. A. <br />11 v <br />Cj -% Ll <br />99 1 <br />7- <br />12 2 <br />0 <br />TRIGONOMETRIC FORMULfE <br />B. B B <br />c a r.�c a c a <br />iAb CA b C�� C <br />fRight Triangle Oblique Triangles <br />Solution of Right Triangles <br />i s b a b c c <br />For Angle A. sin= e , cos = 0 , tan= 3 , cot = a , sec = b , cosec = a <br />Given Required a <br />tan A=L= cot B,c= a'=i z=a 1 } d, <br />a, c A, B, b sinA=G=cosB,b=V/ o+a)(c—a)=c�1—Q= <br />A, a B, b, c B=90°—A, b= a cotA, c= a <br />sin A. <br />b <br />b B, a, c 8=90°—A,a = btanll, r,= cosA. <br />I <br />A, c B, a, b _ B = 90°—A, a = c sin A, b = c cos A, <br />Solution of Oblique Triangles <br />Given Required <br />A, B, a b, c, C b = a sin B C = 180°—(A -)- B), c = a sin C <br />sin A sin A <br />b sin A Ctt sin C <br />A, a, b B; c, C sin B=. a ,=.180°—(A1 B),c= sin <br />f a, b, C A, B, c A+B=180°= C, tan ' (A—B)= (a—b) tan <br />a <br />- a sin C + <br />=sin A <br />a, b, c A., B, C s=a+2+c,sin-2A=I— <br />be <br />sin 4B=_N1(.r <br />- � <br />a, b, c Area s = 2 <br />bcsin A' <br />Area area = 2 <br />ii <br />a'- sin 13 sin C <br />A, B, C,.a Area " area = 2 sin A <br />REDUCTION TO HORIZONTAL <br />�. Horizontal distance=Slope distance multiplied by the <br />cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />y taoce Vert. angle=5° 101. From Table. Page IX. cos 50 10'= <br />` e bis 0 9959. Horizontal distance=319.4X.9959=318.09 ft.. <br />S1o0 ope <br />distan ettimesal t(1—cosine ofance �veaminustance <br />rtoe cl angle)1With lthe <br />l ye same figures as in the preceding example, the follow - <br />Horizontal distance ing result is obtained. Cosine 511 101=.9959.1—,9059=.0041. <br />319.4X.0041=1.31. 319.4-1.31=318.09 It. <br />When the rise is known, the horizontal distance is approximately:—the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft., <br />slope distance=302.6 ft. Horizontal distance=3020— 14 X 14 =302.0-0.32=302.28 ft. <br />2 X 302.6 <br />- — UAD2 1j U. S. A. <br />