Laserfiche WebLink
VIII <br />TABLE II. - Radii, Ordinates and Deflections. Chord =100 ft. <br />Deg. I <br />Radius <br />Mid. <br />Ord. (Dist. <br />Tan. <br />`Dist. <br />Def. <br />lief. <br />for <br />Deg. <br />Radius <br />Mid. <br />Ord. <br />Tan. <br />•Dist. <br />Def. <br />Dist. <br />Def. <br />for <br />1 Ft. <br />2° 17'1.2° <br />t. <br />ft. <br />ft. <br />it. <br />' <br />1' 59' <br />ft, <br />ft. <br />ft. <br />ft. <br />34°171.01 <br />0°10' <br />34377. <br />.036 <br />.145 <br />.291 <br />0.05 <br />7 <br />819.0 <br />1.528 <br />6.105 <br />12.21 <br />2.10 <br />20 <br />17159. <br />.073 <br />.291 <br />.582 <br />0.10 <br />20' <br />781.8 <br />1.600 <br />6.395 <br />12.79 <br />2.20 <br />30 <br />11459. <br />.109 <br />.43G <br />.873 <br />0.15 <br />30 <br />764.5 <br />1.637 <br />6.540 <br />13.08 <br />2.25 <br />"40 <br />8594.4 <br />.145 <br />-.582 <br />1.164 <br />0.20 <br />40 <br />747.9 <br />1.673 <br />,6.685 <br />13.37 <br />2.30 <br />50 <br />6875.5 <br />.182 <br />,727 <br />1.454 <br />0.25 <br />8 <br />716.8 <br />1.746 <br />6.970 <br />13.95 <br />2.40 <br />1 <br />5729.6 <br />.218 <br />.573 <br />1.745 <br />0.30'- <br />20 <br />GS8.2 <br />1.819 <br />7.266 <br />14.53 <br />2.50' <br />10 <br />4911.2 <br />,255 <br />1.018 <br />2.036 <br />0.35 <br />30 <br />074.7 <br />1.555 <br />7.411 <br />14.82 <br />2.55 <br />20 <br />4297.3 <br />.291 <br />1.164 <br />2.327 <br />0.40 <br />40 <br />661.7 <br />1.892 <br />7.556 <br />15.11 <br />2.60 <br />30 <br />3819.8 <br />.327 <br />1.309 <br />2.618 <br />0.45 <br />9 <br />0,37.3 <br />1.965 <br />7.846 <br />15.69 <br />2.70 <br />40 <br />3437.9 <br />.364 <br />1.454 <br />2.909 <br />0.50 <br />20 <br />614.6 <br />2.037 <br />S.13G <br />16.27 <br />2.80 <br />50 <br />3125.4 <br />.400 <br />1.600 <br />3.200 <br />0.55 <br />30 <br />603.8 <br />2.074 <br />3.281 <br />16.56 <br />2.85 <br />2 <br />2864.9 <br />.43G <br />1.745 <br />3.490 <br />0.60 <br />40 <br />593.4 <br />2.110 <br />8.426 <br />16.85 <br />2.90 <br />10 <br />2644.6 <br />.473 <br />1.591 <br />3.751 <br />0.65 <br />10 <br />573.7 <br />2.153 <br />8:716 <br />17.43 <br />3.00• <br />20 <br />2455.7 <br />.509 <br />2.036 <br />4.072 <br />0.70 <br />30 <br />546.4 <br />2.292 <br />9.150 <br />18.30 <br />3.15 <br />30 <br />2292.0 <br />.545 <br />2.181 <br />4.363 <br />0.75 <br />11 <br />521.7 <br />2.402 <br />9.555 <br />19.16 <br />3.30 <br />40 <br />214S.8 <br />.582 <br />2.327 <br />4.654 <br />0.80 <br />30 <br />499.1.2.511 <br />10.02 <br />20.04 <br />3.45 <br />50 <br />2022.4 <br />.G18 <br />2.472 <br />4.945 <br />O.S., <br />12 <br />478.3 <br />2,620 <br />10.45 <br />20.91 <br />3.G0 <br />8 <br />1910.1 <br />.655 <br />2.613 <br />5.235 <br />0.90 <br />30 <br />459:3 <br />2,730 <br />10.89 <br />21.77 <br />3.75 <br />10 <br />1809.6 <br />.691 <br />2.763 <br />5.526 <br />0.95 <br />13 <br />441.7 <br />2,839 <br />11.32 <br />22.64 <br />3.90 <br />20 <br />1719.1 <br />.727 <br />2.903 <br />5.817 <br />1.00 <br />30 <br />425.4' <br />2,949 <br />11.75 <br />23.51 <br />4.05 <br />•30 <br />1637.3 <br />.764 <br />3.054 <br />6.108 <br />1.05 <br />14 <br />410.3 <br />3.058 <br />12.18 <br />24.37 <br />4.20 <br />40 <br />1562.9 <br />.S00 <br />3.199 <br />6.393 <br />1.10 <br />30 <br />396.2 <br />3.165 <br />12.62 <br />25.24 <br />4.35 <br />•50 <br />1495.0 <br />.836 <br />3.345 <br />6.689 <br />1.15 <br />15 <br />383.1 <br />3,277 <br />13.05 <br />26.11 <br />4.50 <br />L <br />.1432.7 <br />.873 <br />3.490 <br />6.9SO <br />1.20 <br />30 <br />370.8 <br />3.387 <br />13.49 <br />26.97 <br />4.65 <br />10 <br />1375.4 <br />.909 <br />3.635' <br />7.271 <br />1.25 <br />16 <br />359.3 <br />3.496 <br />13.92 <br />27.84 <br />4.80 <br />20 <br />1322.5 <br />.045 <br />3.718; <br />7.561 <br />1:30 <br />30 <br />348.5 <br />3.606 <br />14.35 <br />28.70 <br />4.95 <br />30 <br />1273.6 <br />.082 <br />3.926, <br />7:552 <br />1.3.5 <br />•17 <br />338.3 <br />3.716 <br />14.78 <br />29.56 <br />5.10 <br />40 <br />1228.1 <br />1.018 <br />4.071' <br />8.143 <br />1.40 <br />1S <br />319.6 <br />3,935 <br />15.64 <br />31.29 <br />5.40 <br />50 <br />'1185.8 <br />1.055 <br />4.2171 <br />8.433 <br />1.45 <br />19 <br />302.9 <br />4,155 <br />16.51 <br />33.01 <br />5.70 <br />S <br />1146.3 <br />1.091 <br />4.362 <br />8.724 <br />1.50 <br />20 <br />287.9 <br />4,374 <br />17.37 <br />34.73 <br />6.00 <br />10 <br />1109.3 <br />1.127 <br />4.507 <br />9.014 <br />1.55. <br />21 <br />274.4 <br />4.594 <br />18.22 <br />:;6.44 <br />6.30 <br />20 <br />1074.7 <br />1.164 <br />4.653 <br />0.305 <br />1.60 <br />22 <br />262.0 <br />4.814 <br />19.08 <br />38.16 <br />6.60 <br />30 <br />1042.1 <br />1.200 <br />4.708 <br />0.596 <br />1.65 <br />23 <br />250.8 <br />5.035 <br />19.94 <br />39.87 <br />6.90 <br />40 <br />1011.5 <br />1.237 <br />4.943 <br />0.386 <br />1.70 <br />24 <br />240.5 <br />5.255 <br />20.79 <br />41.58 <br />7.20 <br />50 <br />982.6 <br />1.273 <br />5.088 <br />10.18 <br />1.75 <br />25 <br />231.0 <br />5.476 <br />21.64 <br />43.28 <br />7.50 <br />6 <br />955.4 <br />1.309 <br />5.234 <br />10.47. <br />1.80 <br />26 <br />222.3 <br />5,697 <br />22.50 <br />44.99 <br />7.80 <br />10 <br />929.6 <br />1.346 <br />5.379 <br />10.70 <br />1.85 <br />27 <br />214.2 <br />5.918 <br />23.35 <br />46.69 <br />8.10 <br />20 <br />905.1 <br />1.382 <br />5.524 <br />11.05 <br />1.00 <br />28 <br />206.7 <br />6.139 <br />24.19 <br />48.38 <br />8.40 <br />30 <br />SS1.9 <br />1.418 <br />5.669 <br />11.34 <br />1.95 <br />29 <br />199.7 <br />6.360 <br />25.04 <br />50.07 <br />8.70 <br />40 <br />859.9 <br />1.455 <br />5.814 <br />11.63 <br />2.00 <br />1 30 <br />193.2 <br />6.583 <br />25.88 <br />51.76 <br />9.00 <br />The middle ordinate in inches for any cord of length (C) is equal to .0012 C' <br />multiplied by the middle ordinate taken from the above table. Thus, if it <br />desired to bend a 30 ft. rail to fit a 10 degree curve, its middle ordinate should <br />be .0012X900X2.183 or 2.36 inches, <br />TABLE III. Deflections for Sub Chords for Short Radius Curves. <br />Degree <br />of <br />Curve <br />Radius <br />50 <br />Y/ sub chord J sin of } def. angle <br />R <br />Length <br />of arc <br />for 100 ft. . <br />sin. i def. ang. <br />.12.5 Ft. <br />15 Ft. <br />20 Ft. <br />25 Ft. <br />300 <br />193.18 <br />to 51' <br />2° 17'1.2° <br />58' <br />3° 43' <br />101.15 <br />32° . <br />181.39 <br />1' 59' <br />2° 25' <br />3° 1o' <br />3° 58' <br />101.33 <br />34°171.01 <br />3 <br />2° 06. <br />20 33' <br />- 3' 21' <br />4° 12' <br />101.48 <br />36° <br />161 .8o <br />2° 13' ' <br />2' 41' <br />3° 33' <br />a° 26' <br />Ioi.66 <br />38° <br />153:58 <br />2°20' <br />2°49' <br />3' 44 <br />4° 40 <br />101.85 <br />40° <br />146.19 <br />2° z7' <br />2' 57' <br />3' 55' <br />4° 54 <br />102.o6 <br />42' <br />139.52 <br />'-° 34' <br />3' 05' <br />4° 07' <br />5' 08 <br />102.29 <br />44° <br />133.47 <br />2° 41' <br />3° 13' <br />4° 18' <br />S°'22' <br />102.53 <br />46° <br />127.97 <br />2° 48' <br />3° 21' <br />4° 29 <br />5° 36' <br />102.76 <br />4R' <br />122.• 92 <br />2° 55' <br />3' 29' <br />4° 40 <br />5° 50' <br />103.00 <br />500 <br />118.31 <br />3°02' <br />3°38 <br />4°51' <br />6004' <br />103.24 <br />52° <br />114.06 <br />3' 09' <br />3° 46' <br />5° 02' <br />6° 17' <br />103.54 <br />54' <br />110.11 <br />3° 16' <br />3' 54' <br />S' 13' <br />6° 31' <br />103.84 <br />56° <br />Io6.5o _ <br />3° 22' <br />4° 02' <br />5'23! <br />6? 44 <br />104-14 <br />58° <br />103.14 <br />3'29' <br />4'10' <br />5'34' <br />6'57' <br />104.43 <br />6o° <br />100.00 • _ <br />3' 35 <br />4° 18' <br />5' 44 <br />7° 12' <br />104.72 <br />IR <br />CURVE FORMULAS <br />T = R tan J I It = T cot. ' I chords <br />5o tan's- Chord def. _ <br />T Sin. J D R= 50 R <br />Si.. i D = 5o Sin. , D No. chords = I <br />R E = R ex. sec 12I <br />50 tan a I <br />Sin. D = r E = T tan I I Tan. def. _ chord def: <br />The square of any distance, divided by twice the radius, will equal <br />the distance from tangent to curve, very nearly. <br />To find angle for A given distance and deflection. <br />Rule I. Multiply the given distance by .01745 (def. for I° for i ft. <br />see Table II.), and divide given deflection by the product. <br />Rule 2. Multiply given deflection by 57.3, and divide the product by <br />the given distance. <br />To find deflection for a given angle and distance. Multiply the angle <br />by .01745, and the product by the distance. <br />GENERAL DATA <br />RIGHT ANGLE TRIANGLES. Square the altitude, divide by twice the <br />base. Add quotient to base for hypotenuse. <br />Given Base loo, Aft. 10.10x_200=.5. 100-x-.5=100.5 hyp. <br />Given Hyp. loo, Alt. 25.252+200=3.I25.'100-3-125=96.875 =Basc. <br />Error in first example, .002; in last, .o45. <br />To find Tons of Rail in one mile of track: multiply weight per yard <br />by 11, and divide by 7. <br />Lr;vnLING. The correction for curvature and refraction, in feet <br />and decimals of feet is equal to 0.574d°, where d is the distance in miles. <br />The correction for curvature alone is closely, Jd2. The combined cor- <br />rection is negative. <br />PROBABLE ERROR. If d, , d2, d„ etc. are the discrepancies of various <br />results from the mean, and if Ida=the sum of the squares of these differ- <br />ences and n=the number of observations, then the probable error of tho <br />mean= 4-0.6745 n n a-1) <br />SOLAR EPHI IlMERIS. Attention is Called to the Solar Ephemeris for <br />the current year, published by Keuffel & Esser Co., and furnished free of. <br />charge upon request, which is 3:}x5• in., with about 90 pages of data very <br />useful to Vie Surveyor; such as the adjustments of transits, levels and <br />solar attachments; directions and tables for determining the meridian <br />and the latitude from observations on the sun and Polaris; stadia meas- <br />urements; magnetic declination; arithmetic constants; English and Metric <br />conversions; trigonometric formulas; Natural andLogarithmie Functions; <br />and Logarithms of Lumbers. <br />TABLE IV. - Alinutes in Decimals of a Degree: <br />1' <br />.0167 <br />11' <br />,1833 <br />21' <br />.3500 <br />'31' <br />.5167 <br />41' <br />.6833 <br />51' <br />.8500 <br />2.0333 <br />12 <br />.2000 <br />22 <br />.3667 <br />32 <br />.5333 <br />42 <br />.7000 <br />52 <br />.8667 <br />3 <br />.0500 <br />l3 <br />,2167 <br />23 <br />.3833 <br />33 <br />.5500 <br />43 <br />.7167 <br />53 <br />.8833 <br />4 <br />.0667 <br />14 <br />.2333 <br />21 <br />.4000 <br />34 <br />.5667 <br />44 <br />.7333 <br />54 <br />.9000 <br />5 <br />.0333 <br />15 <br />,2500 <br />25 <br />.4167 <br />35 <br />.5533 <br />45 <br />.7500 <br />55 <br />.9167 <br />6 <br />.1000 <br />16 <br />.2667 <br />20 <br />.4333 <br />36 <br />.6000 <br />46 <br />.7667 <br />50, <br />.9333 <br />7 <br />.1167 <br />17 <br />.2833 <br />27 <br />.4500 <br />37 <br />.6167 <br />47 <br />.7833 <br />57 <br />.9500 <br />8 <br />.1333 <br />IS <br />.3000 <br />28 <br />.4667 <br />38 <br />.6333 <br />48 <br />.8000 <br />58. <br />.9667 <br />9 <br />.1500 <br />19 <br />,3167 <br />29 <br />.4833 <br />39 <br />.6500 <br />49 <br />SW7 <br />59 <br />.9833 <br />10 <br />.1667 <br />.20 <br />.3333 <br />30 <br />.5000 <br />40 <br />1 .6667 1 <br />50 <br />1 .8333 <br />60 <br />1.0000 <br />TADLt V. - <br />Inches in Decimals of a Foot. <br />1-16 <br />3-32 <br />3-16 <br />5-16 <br />MY4 <br />7 <br />.0052 <br />.0078 <br />.6104 <br />.0156 <br />.0208 <br />.0260 <br />.0313 <br />.0417 .0521 <br />.06251.0729' <br />1_ <br />2 <br />3 <br />'4 <br />b <br />6 <br />7 <br />8 9 <br />10 <br />11 <br />1 <br />.0833 <br />.1667 <br />.2500 <br />.3333 <br />.4167 <br />.5000 <br />.5833 <br />:6667 .7500 <br />1 .8333 <br />.9167. <br />