Laserfiche WebLink
TRIGONOMETRIC FORMULIE <br />B B B <br />e a a c <br />a <br />:A 6 C A G C <br />c <br />RightTriangle Oblique Triangles <br />Solution of -Right Triangles <br />For Angle A. sin = C , cos= tan= b cot= a , sec = b, cosec = <br />Given-, I Re4uired ¢ <br />B, + — <br />;�.. b as <br />sin A = 6 =Cosa:b=�{c l a { j aa. <br />C �� Qa <br />� r' -A, a.::•B3' b, o B=90°—A,fb _ ¢cotA,o= a <br />sin A. <br />y. A, b B, a, c B=90°—A, a = b tan A, c=b <br />_ eosA:- <br />A, c B, a, b B=90°—A, a= c sin A T r c cos 11, <br />Solution of 'Oblique Triangles <br />Given Renuired a sin.V <br />!A, B,a b, C, C b= C=180°—(A+B),c=¢sin( <br />sin A sin A <br />b -sin A a sin C <br />A, a,, b B, c, C ia ,C 180°—(A 1 B), c = sin A <br />M a, b„ C.. A, $, e A -{-B=1$0°— C, tan -'2 A+B} <br />(A—B) ¢—b} tan � ( <br />a -)- b <br />' c = <br />a sin C <br />sin A <br />1 .a, b, c A, B, C s=¢+2+C,sinaA= i . <br />� <br />-A` <br />a c ,C=180°—(A+13� • <br />.� <br />a, b, a Area s 2 , area = s(s—a (s—b j (s—c <br />b, e Areab C sin A <br />a area = 2 <br />a'- sin B sin U <br />q :A, B, C, a Area area = 2 sin A <br />REDUCTION TO HORIZONTAL <br />Horizontal distance=Slope distance multiplied by the <br />i <br />s cosine of the vertical angle. Thus: slope distance =319.4 ft. <br />tarpVert. angle=5" 101. From Table, Page IX. cos 611a'- <br />m 9959. Horizontal distance=319.4X.9959=316.09 ft. <br />5104�gle a"^ Horizontal distance also=Slope distance minus slope <br />Vest. distance times (1—eoslne of vertical angle). With the <br />same figures as in the preceding example, the follow - <br />Horizontal distance inu result is obtained. Cosine 5° 10'=.0959.1—.9959=.0041. <br />319.4X.0041=1.3!..119.4-1.31=318-09 ft. <br />When the rise is known, the horizontal distance is approximately: -the slope dist- <br />ance less the square of the rise divided by twice the slope distance. Thus: rise =14 ft., <br />slope distanee=302.6 ft. Horizontal distance=302.6— 14 X. 14 =302.6-0.32=302.28 ft. <br />2 X 302.6 <br />MADE IN U. 8, A. <br />'19 <br />