Laserfiche WebLink
VIII <br />TABLE II. - Radii, Ordinates and Deflections. Chord =100 f t. <br />Deg. Radius <br />Md., <br />Ord. <br />Tan. <br />Dist. <br />Def, <br />Dist. <br />Def. <br />for <br />1 Ft. <br />Deg. <br />,Radius <br />Mid. <br />Ord. <br />Tan. <br />Dist, <br />Def, <br />Dist. <br />Det. <br />for <br />1 Ft. <br />It. <br />ft <br />t. <br />ft. <br />/ <br />320 <br />ft. <br />ft. <br />ft, <br />ft. <br />3° 58' <br />0110' 34377. <br />.036 <br />.145 <br />.291 <br />0.05 <br />7. <br />819.0 <br />1.528 <br />6.105 <br />12.21 <br />2.10 <br />20 17189. <br />.073.291 <br />4° 26'-' <br />.582 <br />0.10 <br />20' <br />781.8 <br />1.600 <br />6.395 <br />12.79 <br />2.20 <br />30 11459. <br />.109 <br />.436 <br />S73 <br />0.15 <br />30 <br />764.5 <br />1.637 <br />6.540 <br />13.08 <br />2.25 <br />40 8594.4 <br />.145.582 <br />102.29 <br />1.164 <br />0.20 <br />40 <br />747.9 <br />1.673 <br />6.GS5 <br />13.37 <br />2.30 <br />50 6875.5 <br />.182 <br />,727 <br />1.454 <br />0.25 <br />8 <br />716.8 <br />1.746 <br />6.976 <br />13.95 <br />2.40 <br />1 5729.6 <br />.218 <br />.873 <br />1.745 <br />0.30 <br />20 <br />688.2 <br />1.819 <br />7.266 <br />14.53 <br />2.50 <br />10 4911.2 <br />.255 <br />1,018 <br />2.036 <br />0.35 <br />30 <br />674.7 <br />1.855 <br />7.411 <br />14.82 <br />2.55 <br />20 4297.3 <br />.291 <br />1.164 <br />2.327 <br />0.40 <br />40 <br />661.7 <br />1.892 <br />7.556 <br />15.11 <br />2.60 <br />30 3819.8 <br />.327 <br />1.309 <br />2.618 <br />0.45 <br />9 <br />637.3 <br />1.965 <br />7.846 <br />15.69 <br />2.70 <br />40 3437.9 <br />.364 <br />1.454 <br />2.909 <br />0.50 <br />20 <br />614,6 <br />2.037 <br />8.136 <br />16.27 <br />2.80 <br />50 3125.4 <br />.400 <br />1.600 <br />3,200 <br />0.55 <br />30 <br />603.S <br />2.074 <br />8.281 <br />16.56 <br />2.85 <br />3 2864.9 <br />.436 <br />1.745 <br />3.490 <br />0.60 <br />40 <br />593.4 <br />2.110 <br />8.426 <br />16.85 <br />2.90 <br />10 2644.6 <br />.473 <br />1.891 <br />3.781 <br />0.65 <br />10 <br />573.7 <br />2.183 <br />17.43 <br />3.00 <br />20 2455.7 <br />.509 <br />2.030 <br />4.072 <br />0.70 <br />30 <br />546.4 <br />2.292 <br />.8.716 <br />9.150 <br />18.30 <br />3.15 <br />30 2292.0 <br />.545 <br />2.181 <br />4.363 <br />0.75 <br />11 <br />521.7 <br />2.402 <br />9.585 <br />19.16 <br />8.30 <br />40 2148.8 <br />.582 <br />2.327 <br />4.654 <br />0.80 <br />30 <br />499.1 <br />2.511 <br />16.02 <br />20.04 <br />3.45 <br />AO 2022.4 <br />.618 <br />2.472 <br />4.945 <br />0.85 <br />13 <br />478.3 <br />2.620 <br />10.45 <br />20.91 <br />3.60 <br />a 1910.1 <br />.655 <br />2.618 <br />5.235 <br />0.90 <br />30 <br />459.3 <br />2.730 <br />10.89 <br />21.77 <br />3.75 <br />10 1809.6 <br />.691 <br />2.763 <br />5.52G <br />0.95 <br />13 <br />441.7 <br />2.839 <br />11.32 <br />22.64 <br />3.90 <br />.20 1719.1 <br />.727 <br />2.908 <br />5.817 <br />1.00 <br />30' <br />425.4 <br />2.949 <br />11..75 <br />23,51 <br />4.05 <br />30 1637.3 <br />.764 <br />3.054 <br />6.108 <br />1.05 <br />14 <br />410.3 <br />3.058 <br />12.18 <br />24.87 <br />4.2U <br />40 1562.9 <br />.800 <br />3.199 <br />6.398 <br />1.10 <br />30 <br />396.2 <br />3.168 <br />12.62 <br />25.24 <br />4.35 <br />50 1495.0 <br />.836 <br />3..345 <br />6.689 <br />1.15 <br />15 <br />383.1 <br />3.277 <br />13.05 <br />26.11 <br />4.50 <br />a 1432.7 <br />.873 <br />3.490 <br />6.9S0 <br />1.20 <br />30 <br />370.8 <br />3.387 <br />13.49 <br />26.97 <br />4.65 <br />10 1375.4 <br />.009 <br />3.635 <br />7.271 <br />1.25 <br />16 <br />359.3 <br />3.496 <br />13.92 <br />27.84 <br />4.80 <br />20 1322'.5 <br />.045 <br />3.718 <br />7.561 <br />1.30 <br />30 <br />348.5 <br />3.606 <br />14.35 <br />28.70 <br />4.95 <br />30 1273.6 <br />.982 <br />3.92G <br />7.552 <br />1.35 <br />17 <br />338.3 <br />3.716 <br />14.78 <br />29.56 <br />5.10 <br />40 1228.1 <br />1.018 <br />4.071 <br />8.143 <br />1.40 <br />18 <br />319.6 <br />3.935 <br />15.64 <br />31.29 <br />5.40 <br />50 11.85.8 <br />1.055 <br />4.217 <br />8.433 <br />1.45 <br />19 <br />303.9 <br />4.155 <br />1G.51 <br />33.01 <br />5.70 <br />6 1146.3 <br />1.091 <br />4.362 <br />8.724 <br />1.50 <br />20 <br />287.9 <br />4.374 <br />17.37 <br />34.73 <br />6.00 <br />.10 1109_3 <br />1.127 <br />4.507 <br />9.014 <br />1.55 <br />21 <br />274.44.594 <br />18.22 <br />36.44 <br />6.30 <br />20 1074.7 <br />1.164 <br />4.653 <br />9.305 <br />1.60 <br />22 <br />263.0 <br />4.814 <br />19.08 <br />83.16 <br />6.60 <br />30 1042.1 <br />1.200 <br />4.798 <br />9.596 <br />1,65 <br />23 <br />250.5 <br />5.035 <br />19.94 <br />39.87 <br />6.90 <br />40 1011.5 <br />1.237 <br />4.943 <br />9.886 <br />1,70 <br />24 <br />240.5 <br />5.255 <br />20.79 <br />41.58 <br />7.20 <br />50 982.6 <br />1.273 <br />5.08S <br />10.18 <br />1.75 <br />25 <br />231.0 <br />5.476 <br />21.64 <br />43.28 <br />7.50 <br />6 955.4 <br />1.309 <br />5.234 <br />10.47 <br />1.80 <br />26 <br />222.3 <br />5.607 <br />22.50 <br />44.99 <br />7.80 <br />10 929.6 <br />1.346 <br />5.379 <br />10.76 <br />1.85 <br />27 <br />214.2 <br />5.918 <br />23.35 <br />46.69 <br />8.10 <br />20 905.1 <br />1,382 <br />5.524 <br />11.05 <br />1.90 <br />'28 <br />206.7 <br />6.139 <br />24.19 <br />48.38 <br />8.40 <br />30 881.9 <br />1.418 <br />5.669 <br />11.34 <br />1.95 <br />20 . <br />190.7 <br />6.360 <br />25.04 <br />50.07 <br />8.70 <br />40 859.9 <br />1.455 <br />.5.814 <br />11.63 <br />2.00 <br />30 <br />193.2 <br />6.583 <br />25.88 <br />51.76 <br />9.00 <br />The middle ordinate in inches for any cord of length (C) is e nal to .G012 C1 <br />multiplied by the middle ordinate taken from the above table. Thus, if it <br />desired to bend a 30 ft. rail to fit a 10 degree curve, its middle ordinate should <br />be .0012X900X2.183 or 2.36 inches. <br />TABLE III. Deflections for Sub Chords for Short Radius Curves. <br />Degree <br />of <br />Curve <br />Radius <br />50 <br />A sub chordsLength <br />It = in of 1 def. angle <br />of arc <br />for 100 ft. <br />sin. 22 def. ang. <br />12.5 Ft. <br />15 Ft. <br />20 Ft. <br />25 Ft. <br />300193.18 <br />1°51. <br />2°11' <br />2°58' <br />3°43' <br />1:01.15 <br />320 <br />181.39 <br />10 59'. <br />2° 25' <br />3 10' <br />3° 58' <br />101.33 <br />34° <br />171.01 <br />2° 06 <br />2° 33' <br />3°2I' <br />4° 12' <br />101.48 <br />36° <br />161,80 <br />2° 13 <br />2041' <br />30 33' <br />4° 26'-' <br />101.66 <br />380 <br />153.58 <br />2° 20, <br />2° 49' <br />3° 44' <br />4° 40' <br />101.85 <br />400 <br />146.19 <br />2° 27' <br />2° 57' <br />3° 55 <br />4° 54` <br />102.06 <br />42' <br />139.52 <br />2° 34' <br />3° o5' <br />4° 07' <br />S° 08 <br />102.29 <br />44' <br />133.47 <br />2° 41' <br />3° 13' <br />4° 1S' <br />5° 22' <br />102.53 <br />460 <br />727.97 <br />z° 48' <br />3° 21' <br />4° 29' <br />S° 36' <br />102.76 <br />48° <br />122.92 <br />2° 55' <br />3° 29' <br />4° 40' <br />5° 50' <br />103.00 <br />so. <br />118.31 <br />3° 02' <br />3,38 1 <br />4° 51' <br />6004 1 <br />103.24 <br />520 <br />I14.o6 <br />3° o9' <br />3° 46' <br />5° 02' <br />6° 17' <br />103.54 <br />54 <br />110.11 ._ <br />` 3° 16' <br />3° 54' <br />5° 13' <br />6° 31' <br />103. 84 <br />56° <br />ig6,56 <br />3° 22' <br />4° 02' <br />5° 23' <br />6° 44' <br />104.14 <br />58° - <br />" 103.14 <br />3,29? <br />4° Io' <br />5,34 1 <br />6° 57' <br />10443 <br />60° <br />100.00 <br />3° 35' <br />4° 18' <br />5° 44` <br />1 7° 11' <br />104.72 <br />CURVE FORMULAS <br />T = R tan 211 R = T cot. Z I Chord def. = chord2 <br />T _ 5o tan 1 I R <br />Sin, J D R = 50 <br />Z D <br />Sin. } D = 5� Sin. 2 No. chords = <br />R E= R es. sec Z 1 D <br />So tan a I <br />Sin. } D = ,h E = T tan I I Tan. def. = 12 chord def. <br />The square of any distance, divided by twice the radius, will equal <br />the distance from tangent to curve, very nearly. <br />To find angle for a given distance and deflection. <br />Rule i. Multiply the given distance by .01745 (def. for I° for 1 ft. <br />see Table II.), and divide given deflection by the product. <br />Rule 2. Multiply given deflection by 57.3, and divide the product by <br />the given distance. <br />To find deflection for a given angle and distance. Multiply the angle <br />by .01745, and the product by the distance. <br />GENERAL DATA <br />RIGUT ANGLE TwANGLns. Square the altitude, divide by twice the <br />base. Add quotient to base for hypotenuse. <br />Given Base loo, Alt. 10.1o2-,200-,5. 1oc,+.5 � 1oo•5 hyp• <br />Given Hyp. loo, Alt. 25.252-200=3.125. 100-3.125=96.875=Base. <br />Error in first example, .002; In last, .045. <br />To find Tons of Rail in one mile of track: multiply weight per yard <br />by 11, and divide by 7. <br />Ly-vEi.i c.. The correction for curvature and refraction, in feet <br />and decimals of feet is equal to 0.574d2, where d is the distance in miles. <br />The .correction for curvature alone is closely, 8d2. The combined cor- <br />rection N negative. <br />PROBABLE ERROR. If d1, d:i, d„ etc. are the discrepancies of various <br />results from the mean, and if Y-d2=the sum of the squares of these differ- <br />ences and n=the number of observations, then the probable error of the <br />mean -0.6745 Id' <br />n (n-1} <br />SOLAR EP11EmERIS. Attention is called to the Solar Ephemeris for <br />the current year, published by Kcuffel & Esser Co., and furnished free of <br />charge upon request, which is 3,1-x58 in., with about 90 pages of data very <br />useful to the Surveyor; such as the adjustments of transits, levels and <br />solar attachments; directions and tables for determining the meridian <br />and the latitude from observations on the sun and Polaris; stadia meas- <br />urements; magnetic declination; arithmetic constants; English and Metric <br />conversions; trigonometric formulas; Natural and Logarithmic Functions; <br />and Logarithms of Numbers. <br />TABLE IV. - Minutes <br />in <br />Decimals of n Degree. <br />P <br />.0167 <br />11' <br />.1833 <br />f 21' <br />.3500 <br />31'-11157 <br />41' <br />6833 <br />51' <br />.8500 <br />2 <br />.0333 <br />12 <br />.2000 <br />.0104 <br />.3667 <br />32 <br />.5333 <br />42 <br />.7000 <br />52 <br />.8667 <br />3 <br />.0500 <br />13 <br />.2167 <br />122 <br />23 <br />.3833 <br />33 <br />.5500 <br />43 <br />.7167 <br />53 <br />.8833 <br />4 <br />.1667 <br />14 <br />.2333 <br />24 <br />.4000 <br />34 <br />.5667 <br />44 <br />.7333 <br />54 <br />.9000 <br />6 <br />.0667 <br />15 <br />.2500 <br />25 <br />.4167 <br />35 <br />.5533 <br />45 <br />.7500 <br />55 <br />,9167 <br />6 <br />.0833 <br />.1000 <br />16 <br />.2667 <br />20 <br />.4333 <br />36 <br />.6000 <br />46 <br />.7667 <br />56 <br />.0333 <br />7 <br />.1167 <br />17 <br />.2833 <br />27 <br />.4500 <br />37 <br />.6167 <br />47 <br />.7833 <br />57 <br />.0500 <br />8 <br />18 <br />.3000 <br />2S <br />.4667 <br />3S <br />.6333 <br />48 <br />.8000 <br />58 <br />.9657 <br />9 <br />.1333 <br />19 <br />.3167 <br />29 <br />.4833 <br />39 <br />.6500 <br />49 <br />.5167 <br />59 <br />.9833 <br />10 <br />.1500 <br />.166,7 <br />20 <br />.3333 <br />30 <br />.5000 <br />40 <br />.6667 <br />50 <br />S333 <br />60 <br />1.0000 <br />TABLE V. <br />Inches in Decimals of a Foot. <br />1-1G <br />3-32 <br />5-1G <br />% <br />f <br />l <br />.0052 <br />.0078 <br />.0104 <br />.OI56 <br />.0203 <br />.02GD <br />.0313 <br />.0417 <br />.0521 <br />.0625 <br />.0729 <br />1 <br />2 <br />3 <br />4 <br />5 <br />6 <br />7 <br />8� <br />9-- <br />10 <br />J0- <br />11^ <br />0833 <br />.1667 <br />.2300 <br />.3333 <br />.4167 <br />.5000 <br />5832 <br />.5333 <br />.6667 <br />.7500 <br />.5333 <br />.9167 <br />